Greetings to the participants of International Scientific and Practical E-Conference on Agriculture and Food Security «Anthropogenic evolution of modern soils and food production under changing of soil and climatic conditions», October 29 - November 28, 2015

Dear Colleagues and Friends!

A man interferes into the nature processes in different ways. Discussing the ecological consequences of this interference, great accent is drawn to its forms which devastating effect on the natural interrelations is obvious: melioration measures, nuclear energetics, technogenic landscapes and etc. Meanwhile there are some mechanisms that have been used by the humankind to influence the environment for many centuries, scarcely thinking over ecological consequences and limits.

One of the such-like impacts is the substitution of natural vegetation by cultivated plants on considerable part of the land. It is a tremendous in scale impact on biosphere and predominantly on the most important element – soil.

In the run of this impact the agrogenic and technogenic loading on the soil covering of our planet has grown quickly. During the course of the agricultural centuries-long activity of the human being the change of the soil usage modes took place; various agrolandscape restructuring was done repeatedly.

Soil plays a very important role in biosphere. The agrogenic and technogenic loading greatly affects its functions. To save and to increase soil fertility are the main humankind problems.

As a result of intensification of agriculture production the humankind has gained great success in the food problem solution. Considerable achievements in this field are typical characteristics of scientific and technical progress of the second half of the XX century. But never the less in spite of the achievements the intensive agriculture generated many problems.

As a result of high level of crop science intensification many regions of the world have become ecological disaster zones. Melioration, chemical use, mechanical equipment application and other factors of the intensive agriculture result in anthropogenic environmental impact reinforcing. The scale of their influence is large enough to emerge the ecological crisis disaster on a global basis.

In this regard the problems of today’s conference are of particular significance. These conference guidelines are determined by the particular importance and vitality of the problems under consideration for Russia. Soil covering is the main treasure of our country. Its preservation is the most important national concern.

The conference is aimed to provide the integration of the International Scientific Community efforts to solve the most important problems of soil science and soil management. This is of particular vitality in connection with the FAO announcement of 2015 the year of soils. Within the period of big changes in the world it is important to consolidate the people ethics origins, which are based on the concern about soil covering of the planet.

Chairman of Conference,
Professor of Orel State Agrarian University,
Honored Scientist of Russian Federation

V.T. Lobkov
RESOLUTION

The participants of the International Scientific and Practical E-Conference «Anthropogenic evolution of modern soils and food production under changing of soil and climatic conditions», the representatives of scientific and educational institutions and organizations of 11 countries (Russia, Indonesia, Serbia, Azerbaijan, Republic of Belarus, Sri Lanka, Nigeria, Ukraine, Algeria, Iran, Australia) admit the priority and significance of soil conservation as a background of development of national economics and agro industrial sector on the basis of energy and resource saving technologies.

More than 60 reports were submitted on the conference run. The submitted reports covered the wide range problems connected with modern soil condition and development of different trends of agrarian production, and also the problems of international cooperation in the sphere of soil conservation and their protection from anthropogenic impact.

The main achievement of the conference is the statement of one of the most vital and burning problems – the necessity of soil conservation and effective monitoring their state in the context of country development in import substitution conditions on the basis of efficient utilization of basic and nonrecoverable agricultural means of soil production.

Despite of the achieved by the academic science considerable successes in the investigation of the above mentioned problems, many issues demand relevant theoretical solution and practical implementation.

The participants of the Conference consider that the Conference was a success and achieved its goal.

In connection with the mentioned above, the participants of the Conference consider that:

the agricultural sector as a basic branch of economy, should develop intensively taking into account the national and international practices of utilization and conservation of the main mean of agricultural production – the soil;

to systematize the information on soil resources conditions at up-to-date level, the governmental authorities are recommended to study suggestions of the Conference participants, generalize and use them for development of the national system of soil protection as the national treasure;

the attention of Ministry of Agriculture of the Russian Federation, Ministry of Education and Science of the Russian Federation and other organizations and establishments, being connected with problem solving in the sphere of monitoring and soil conservation, is paid to the mentioned above questions of present interest, and take measures to their early solution.

The conference resume will be sent into scientific, academic and sectoral research institutes and establishments, that perform investigations and works on viewed at the Conference problems and also in the authoritative governmental institutions, which are responsible for the specified problems solution.

The participants express gratitude to the members of Organizing Committee for work done on behalf of Conference.

Resolution is approved by the participants of the Conference.

Уважаемые коллеги и друзья!

В природные процессы человек вмешивается различными путями. Говоря об экологических последствиях этого вмешательства, обычно имеют в виду те его формы, разрушающее действие которых на природные взаимосвязи очень наглядно: мелиоративные мероприятия, ядерная энергетика, техногенные ландшафты и т.п.

Между тем есть некоторые механизмы, которыми человечество влияет на природную среду уже целые века, практически не задумываясь над экологическими последствиями и не думая о границах.

Одно из воздействий подобного рода - замена на значительной части земли естественной растительности культурными растениями. Это огромное по своим масштабам воздействие на биосферу и в первую очередь на ее важнейший элемент - почву.

В ходе этого воздействия резко возросла агрогенная и техногенная нагрузка на почвенный покров нашей планеты. В земледельческой многовековой деятельности человека происходили изменения режимов использования почв, неоднократно перестраивалась структура агроландшафтов на различных территориях.

Почва выполняет в биосфере чрезвычайно важную роль. Агрогенные и техногенные воздействия не могут не сказываться на ее функциях. Сохранение и повышение плодородия почв – важнейшая экологическая проблема человечества.

В результате интенсификации производства земледелия человечество достигло больших успехов в решении продовольственной проблемы. Крупные достижения в этой области - характерная черта научно-технического прогресса второй половины XX в. Однако наряду с достижениями интенсивное земледелие породило много проблем.

Многие регионы мира в результате высокого уровня интенсификации растениеводства стали зонами экологического бедствия. Мелиорация, химизация, использование средств механизации и другие факторы интенсивного земледелия приводят к усилению антропогенного воздействия на окружающую среду. Масштабы их влияния уже таковы, что возникает угроза экологического кризиса на глобальном уровне.

В связи с этим вопросы данной конференции имеют особую актуальность. Определяя ее направления мы принимаем во внимание особое значение поднимаемых вопросов для России. Почвенный покров – главное богатство нашей страны. Его сохранение - важнейшая национальная задача.

Конференция призвана способствовать объединению усилий международного научного сообщества в решении важнейших проблем почвоведения и земледелия. Это особенно актуально в связи с объявлением ООН 2015 года годом почвы. В период больших перемен в мире важно укрепить истоки нравственности людей, в основе которой находится забота о почвенном покрове планеты.

Председатель оргкомитета, профессор Орловского ГАУ, заслуженный деятель науки Российской Федерации

В.Т. Лобков
РЕЗОЛЮЦИЯ
Международной научно-практической онлайн-
конференции «Антропогенная эволюция современных
почв и аграрное производство в изменяющихся
почвенно-климатических условиях»,
29 октября – 28 ноября 2015 г.

Участники Международной научно-
практической онлайн-конференции
«Антропогенная эволюция современных почв и аграрное производство в изменяющихся
почвенно-климатических условиях», представители научных и образовательных
учреждений и организаций 11 стран (Россия, Индонезия, Сербия, Азербайджан, Белоруссия,
Шри-Ланка, Нигерия, Украина, Алжир, Иран, Австралия) отмечают приоритетную роль и
значимость сохранения плодородия почв как основы для развития национальных экономик
и агропромышленного сектора на основе энерго- и ресурсосберегающих технологий.

Во время работы конференции представлено более 60 докладов. Представленные
dоклады охватывали широкий круг вопросов, связанных с современным состоянием почв и
развитием различных отраслей аграрного производства, а также вопросы международного сотрудничества в сфере сохранения плодородия почв и защиты их от антропогенного воздействия.

Основным достижением конференции является то, что на ней была остро поставлена одна из важнейших проблем – необходимость сохранения плодородия почв и эффективного контроля за их состоянием в контексте развития страны в условиях импортозамещения на основе эффективного использования основного и
невосстановимого средства сельскохозяйственного производства - почвы.

Несмотря на достигнутые академической наукой значительные успехи в
исследовании упомянутых проблем, много вопросов требуют соответствующего
теоретического решения и практической реализации.

Участники Конференции считают, что Конференция прошла успешно и достигла
поставленной цели.

В связи со сказанным выше, участники Конференции считают, что:
аграрный сектор как базовая отрасль экономики, должен интенсивно развиваться с
учетом отечественного и мирового опыта использования и сохранения главного средства
сельскохозяйственного производства - почвы;

для систематизации данных о состоянии почвенных ресурсов на современном научном уровне, рекомендуют органам государственной власти ознакомиться с
предложениями участников конференции, обобщить и использовать их для развития
национальной системы охраны почв как национального достояния;

обращают внимание Минсельхоза России, Минобрнауки России и других организаций
и ведомств, причастных к принятию исполнительных решений в сфере мониторинга и
охраны почв, на указанные выше актуальные вопросы, и рекомендуют принять меры для
их скорейшего решения.

Резюме конференции будет направлено в научные, академические, отраслевые
институты и учреждения, в которых выполняются исследования и работы по
рассмотренным на Конференции проблемам, а также во властные государственные
структуры, от которых зависит решение поставленных задач.

Участники выражают благодарность оргкомитету за хорошую организацию и
проведение Конференции.

Резолюция принята участниками Конференции.

28 ноября 2015 г., http://e-conf.rjoas.com
ABOUT CONFERENCE

Conference sections:

- Economics, development, and rural sociology (E)
- Plant production (F)
- Protection of plants and stored products (H)
- Handling, transport, storage and protection of agricultural products (J)
- Animal production (L)
- Aquatic sciences and fisheries (M)
- Machinery and buildings (N)
- Natural resources (P)
- Food science (Q)
- Human nutrition (S)
- Mathematical and statistical methods (U10)
- Research and surveying methods (U30/40)

The Organizing Committee of Conference:

- **Lobkov V.T.,** Professor, Orel State Agrarian University, Russia (Chairman)
- **Stepanova L.P.,** Professor, Orel State Agrarian University, Russia (Co-Chair)
- **Lopachev N.A.,** Professor, Orel State Agrarian University, Russia (Co-Chair)
- **Dr Amin Mousavi Khaneghah,** Research Assistant, Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- **Seyyed Omolbanin Sharifi Gharbi,** Department of Food Science and Technology, Tonekabon Branch, Islamic Azad Unveristy, Tonekabon, Iran
- **Julijana Tomovska,** PhD, Dean of Faculty of Biotechnical Sciences, University of St. Kliment Ohridski, Bitola, Macedonia
- **Narges Mirsaedghazi,** R&D Manager in Maedeh Food Industrial Co (Member of Yeko Yek Food Industries Group)
- **Esmail Alimohammadi Fard,** Deputy of CEO in Maedeh Food Industrial Co (Member of Yeko Yek Food Industries Group)
- **Leila Sabili,** Researcher, Islamic Republic of Iran
- **Zohreh Bakhtiari,** Researcher, School of Pharmacy, Isfahan University of Medical Science, Iran
- **Kolomeichenko V.V.,** Professor, Orel State Agrarian University, Russia
- **Krujkov N.K.,** Professor, Orel State Agrarian University, Russia
- **Kalashnikova L.V.,** Professor, Orel State Agrarian University, Russia
- **Kuznechova L.A.,** Associate Professor, Orel State Agrarian University, Russia
- **Abakumov N.I.,** Associate Professor, Orel State Agrarian University, Russia
- **Bobkova Y.A.,** Associate Professor, Orel State Agrarian University, Russia
- **Napolov V.V.,** Associate Professor, Orel State Agrarian University, Russia
- **Zolotuhin A.I.,** Associate Professor, Orel State Agrarian University, Russia
- **Kondrashin B.S.,** Associate Professor, Orel State Agrarian University, Russia
- **Plygun S.A.,** Associate Professor, Orel State Agrarian University, Russia (Executive Secretary)
- **Shariati M.A.,** Researcher, Islamic Republic of Iran (Executive Secretary)
ПРИМЕНИМОСТЬ ТЕХНИКИ И ТЕХНОЛОГИИ КАПЕЛЬНОГО ОРОШЕНИЯ В УСЛОВИЯХ АЗЕРБАЙДЖАНА

APPLICABILITY OF EQUIPMENT AND TECHNOLOGY OF DROP IRRIGATION IN THE CONDITIONS OF AZERBAIJAN

Алиев З.Г.
Институт эрозии и орошения НАН, Азербайджан
zakirakademik@mail.ru

Ключевые слова: автоматизация, техника полива, нормативные, справочные, банк данных, котроллер, связи, объективные, датчики.

На современном этапе развития орошаемого земледелия в нашей стране высокоэффективное использование орошаемых земель возможно только при внедрении новейшей прогрессивной водосберегающей техники и технологии полива.

Экологическая безопасность орошения для окружающей среды должна основываться, прежде всего, на водосберегающих технологиях за счет создания условий для более полного использования естественных осадков, оптимизации и нормирования водоподачи, исключения потерь воды на сброс по поверхности и глубинную фильтрацию.

Степень совершенства технических средств полива оценивается при рассмотрении состава всего оросительного комплекса.

Главной целью создания и внедрения технологии капельного орошения является оптимальное рассредоточение и равномерное распределение тока воды в процессе ее перевода в состояние почвенной и воздушной влаги. Для того, чтобы сделать процесс орошения экологически более совершенным, необходимо выбрать оптимальную технологию полива которая, обеспечила бы наиболее сочетание искусственных и естественных осадков и максимальное использование последних. Большое число вариантов грогидрологических, климатических условий, характеристик возможных атмосферных осадков делают оценку технологии полива весьма сложной задачей.

Обеспечение существенного роста и развития сельскохозяйственных культур за счет внедрения систем капельного орошения с возможностью применения минеральных удобрений совместно с поливной водой благоприятны в условиях Азербайджана. Внесение минеральных удобрений посредством капельной системы гораздо более эффективно, чем любой другой метод. Предложенная система капельного орошения по сравнению с традиционно доминирующими в республике способами орошения весьма перспективна, что позволяет обеспечит растения поливной водой беспрерывно в период их вегетации с учетом сохранения экологического равновесия окружающей среды.

Библиография:
1. Алиев Б.Г., Алиев З.Г. «Техника орошения для фермерских и крестьянских хозяйств Азербайджана»//Монография, Изд-во «Азернешр»Баку,1998.113
5. Aliev B.H, Aliev Z.H. The premises about the most important problem of the agriculture in provision water resource mountain and foothill regions Azerbaijan, // J. AAS, #1-3, Baku, 2007, p.179-182.
ВЛИЯНИЕ ПРИЕМОВ ОБРАБОТКИ ПОЧВЫ НА ЕЁ БИОЛОГИЧЕСКУЮ АКТИВНОСТЬ И УРОЖАЙНОСТЬ ЯЧМЕНА ЯРОВОГО

EFFECT OF SOIL CULTIVATION METHODS ON ITS BIOLOGICAL ACTIVITY AND YIELD OF SPRING BARLEY

Бобкова Ю.А., Абакумов Н.И.
Орловский государственный аграрный университет, Орел, Россия
bobkovaj75@mail.ru, agronom113@mail.ru

Ключевые слова: обработка почвы, ячмень, урожайность, биологическая активность, почва.

В настоящее время все еще недостаточно уделяется внимание применению биологических средств повышения плодородия почвы и урожайности возделываемых культур [1,3]. Часто из-за несоблюдения научно-обоснованной системы обработки почвы, постулированное в почву органическое вещество быстро минерализуется, не превращается в гумус. В связи с этим, изучение элементов биологизации земледелия при различных способах основной обработки почвы является актуальной задачей сельскохозяйственной науки и производства [1,2]. С этой целью на опытном поле кафедры земледелия Орловского государственного аграрного университета проводились исследования, направленные на изучение различных по интенсивности систем обработки почвы и их влияние на урожайность ячменя ярового. Данные исследования актуальны для Орловской области, поскольку впервые изучался вопрос о замене отвальной вспашки на другие приемы обработки почвы при возделывании этой важной зерновой культуры.

Почва опытного поля представляет собой типичную для области тёмно-серую среднесуглинистую глееватую почву. Микрорельеф участка выровненный. Пахотный слой имеет слабокислую реакцию почвенного раствора (pH 5,6), достаточно высокое содержание гумуса для этого типа почв и среднее содержание подвижного фосфора и обменного калия.

В качестве объекта исследований использовался районированный в Орловской области сорт ярового шестирядного ячменя Вакула.

Полевой опыт состоял из четырёх вариантов: 1) нулевая обработка; 2) плоскорезная обработка на глубину 20-22 см; 3) обработка KOS на 14-16 см; 4) вспашка плугом ПЛН-3-35 на 20-22 см; Перед посевом была внесена азофоска в дозе 3 ц/га. Посев ячменя проводился 3 мая сеялкой Amazone D-9-60. Норма высева составила 2,13 ц/га.

Полевой опыт размещён методом рендомизированных повторений в трёхкратной повторности. Размер делянки: длина – 30 м, ширина – 20 м, учетная площадь—120 м2. Все наблюдения, анализы и учёт проводили по общепринятым методикам.

В целом период вегетации ячменя можно охарактеризовать как благоприятный, с повышенной температурой и небольшим дефицитом осадков, что практически не отразилось на величине урожая этой культуры.

Достаточно точно представление о действии различных агротехнических приемов на интенсивность разрушения растительного материала дают методы учета биологической активности почвы по разложению естественных источников
целлюлозы — соломы и льняного волокна. Технически наиболее просто определять активность микрофлоры, разлагающей целлюлозу, по степени и скорости распада льняной ткани (Таблица 1).

Таблица 1 – Биологическая активность почвы по вариантам опыта

<table>
<thead>
<tr>
<th>Номер варианта полевого опыта</th>
<th>Глубина заделки ткани, см</th>
<th>Разложилось ткани % к исходной массе</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Нулевая обработка</td>
<td>30</td>
<td>1 определение* 23,44 2 определение** 36,06 3 определение*** 58,61</td>
</tr>
<tr>
<td>2. Плоскорезная обработка</td>
<td>30</td>
<td>1 определение* 9,02 2 определение** 14,31 3 определение*** 17,96</td>
</tr>
<tr>
<td>3. Обработка KOS</td>
<td>30</td>
<td>1 определение* 13,41 2 определение** 72,73 3 определение*** 90,46</td>
</tr>
<tr>
<td>4. Вспашка плугом</td>
<td>30</td>
<td>1 определение* 6,69 2 определение** 7,4 3 определение*** 56,20</td>
</tr>
</tbody>
</table>

* Спустя 3 недели после заложения полотен;
** Спустя 6 недель после заложения полотен;
*** Перед уборкой (спустя 9 недель после заложения полотен).

Таким образом, наиболее интенсивно разложение льняной ткани спустя 3 недели после закладки полотен происходило при нулевой обработке почвы, что, по-видимому, связано с наибольшей активностью и численностью микроорганизмов почвы в этом варианте. Спустя ещё три недели, можно отметить, что активность микроорганизмов по разложению целлюлозы на варианте обработки KOS стала значительно выше, чем на остальных вариантах. В конечном итоге, перед уборкой, т.е. за девять недель, на варианте обработки почвы KOS льняное полотно разложилось почти полностью: 90,46%. Наименьшей биологической активностью отличались почвы, обработанные плоскорезом (17,96%). Варианты с нулевой обработкой и вспашкой по величине биологической активности почвы практически не отличались друг от друга (58,61 и 56,20% соответственно).

Уборка ячменя проводилась методом сплошного комбайнирования селекционным комбайном TERRION-SAMPO SR2010. Учёт урожая проводился поделяночно (Таблица 2).

Таблица 2 – Урожайность ячменя ярового по различным способам основной обработки почвы

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Урожайность, ц/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Нулевая обработка</td>
<td>10,36</td>
</tr>
<tr>
<td>2. Плоскорезная обработка</td>
<td>19,22</td>
</tr>
<tr>
<td>3. Обработка KOS</td>
<td>23,42</td>
</tr>
<tr>
<td>4. Вспашка плугом</td>
<td>20,78</td>
</tr>
<tr>
<td>НСРО05</td>
<td>2,85</td>
</tr>
</tbody>
</table>

Наибольшая урожайность ячменя была получена по обработке почвы KOS и биологическая активность почвы в этом варианте была самая высокая. Наименьшая урожайность была по нулевой обработке почвы, что связано с повышенной засоренностью делянок данного варианта. Угнетённые сорняками растения ячменя не смогли сформировать высокий урожай зерна. Остальные два варианта достоверно не отличались друг от друга по величине урожайности и имели промежуточные значения (19,22 ц/га по плоскорезной обработке и 20,78 ц/га по вспашке).
Изучая приёмы обработки почвы и их влияние на биологическую активность почвы и урожайность ячменя ярового, можно отметить следующую взаимосвязь: обработка почвы KOS позволила получить более высокую урожайность ячменя ярового по сравнению с другими приемами обработки почвы. Возможно, это связано с повышенной на фоне других вариантов биологической активностью почвы.

Библиография:
2. Хайруллин, А. И. Эффективность биологизации и основной обработки почвы в земледелии Предкамья Татарстана: автореф. дис... канд. с.-х. наук: 06.01.01 / Хайруллин Айдар Ильшатович.- Кинель, 2003. - 152 с.
ПРОДУКТИВНОСТЬ И КАЧЕСТВО СЕМЯН СОИ В ЗАВИСИМОСТИ ОТ СОРТА И УСЛОВИЙ ХРАНЕНИЯ

EFFICIENCY AND QUALITY OF OF SOYBEAN SEEDS DEPENDING ON VARIETY AND STORAGE CONDITIONS

Ельджарова Дз.Н., Хекилаев Ц.А.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: соя, урожайность, качество, жир, белок, влажность, температура.

Результаты многочисленных исследований, выполненных в различных почвенно-климатических зонах, свидетельствуют, что проявление особенностей сортов в значительной степени зависит от условий в районах их возделывания, которые существенно различаются не только по климату, почве, но и агротехническим и организационно-экономическим возможностям [1, 2]. Эти зависимости настолько значительны, что в некоторых случаях сорта сои, отличающиеся хорошими продовольственными и технологическими качествами, в результате неблагоприятного воздействия окружающей среды дают продукцию, плохо сохраняющуюся в послеуборочный период и пригодную только для использования на корм скоту.

Исследования проводились в условиях лесостепной зоны на землях ОПХ «Михайловское» в 2013-2014 г.г. Годы проведения исследований, по погодным условиям, по количеству осадков и сумме температур, от среднемноголетних данных отличались незначительно.

Почва опытного участка – типичный выщелоченный чернозем.

Агрохимические показатели почвы опытного участка следующие: содержание гумуса (по Тюрину) – 5,6%, легкогидролизуемого азота – 7,4 мг, подвижного фосфора (по Труогу) – 16 мг, обменного калия – 18 мг на 100 г почвы, рН сол. – 6,4.

Основной целью настоящей работы было изучение продуктивности и качества семян сои в зависимости от сорта и условий хранения.

В опытах изучали продуктивность нескольких сортов (Виллана, Быстрица, Дуар, Аркадия Одесская).

Анализ результатов исследований, свидетельствует, что из испытуемых сортов более высокой продуктивностью обладают сорта Быстрица и Аркадия Одесская, которые обеспечили урожай с 1 гектара в среднем соответственно 23,6 центнера и 25,5 центнера.

Испытуемые сорта также отличались друг от друга основными показателями качества семян.

Более высокой масличностью (26,6%) и содержанием белка (42,3%) обладает сорт Дуар.

Важно не только вырастить хороший урожай, но и сохранить его без потерь в массе и качестве.

Сохранность семян сои зависит от многих факторов, в том числе: от влажности, физиологического состояния, температуры, степени аэрации и др.

Влажность – основной фактор хранения, причем для сои он имеет более важное значение, чем для других культур.
Нами проведены исследования по изучению влияния влажности сои в послеуборочный период хранения семян.

Анализ данных свидетельствует, что при хранении зерна сои в охлажденном состоянии, качество семян в зависимости от влажности в течение 14 дней почти не меняется. Отмечается лишь тенденция снижения энергии прорастания и всхожести, и повышения кислотного числа в семенах с влажностью 20%.

Повышение температуры до 20°C сопровождается усилением дыхания, интенсивностью развития микроорганизмов и гидролиза запасных питательных веществ, в том числе, жира.

Всхожесть семян и энергия прорастания заметно меняются при влажности выше 10% и температуре хранения 20°C и более.

Установлено, что семена сои, содержащие до 45% белка и до 25% жира, отличаются высокой гигроскопичностью и малой стойкостью при хранении. Безопасное хранение семян сои возможно при влажности 11-12%.

В заключение можно отметить, что для лучшего сохранения качества семян сои необходимо соблюдать, во-первых, режим температуры, а во-вторых, стремиться своевременно высушить семена до критической влажности (11-12%).

Библиография:
ПРОДУКТИВНОСТЬ АМАРАНТА И БОБОВЫХ ТРАВ В РАЗЛИЧНЫХ ПОСЕВАХ
THE PRODUCTIVITY OF AMARANTH AND LEGUMES IN DIFFERENT SOWINGS

Сабанова А.А., Фарниев А.Т., Калицева Д.Т.
Горский государственный аграрный университет, Владикавказ, Россия
f-at@yandex.ru

Ключевые слова: амарат, бобовые травы, одновидовые посевы, смешанные посевы, урожайность.

Для стабилизации кормопроизводства и биологизации земледелия необходимо расширение видов кормовых культур, наиболее адаптированных к разнообразным почвенно-климатическим условиям, способных эффективно использовать внешнюю среду за счет своих биологических возможностей [1].

При этом преимущество смешанных (поликомпонентных) агрофитоценозов над монокультурой объясняется наличием экологических как пространственных, так и временных ниш для компонентов. У правильно смоделированных поликомпонентных фитоценозов надземная и корневая система занимают разнопространственные по вертикали и горизонтали и разновременные ниши с минимализацией отрицательного взаимовлияния их.

Решая данную проблему необходимо определить наиболее перспективные компоненты для смешанных посевов кормовых культур, изучить взаимодействие различных факторов и пути возможного их регулирования, определить основные параметры адаптивной технологии возделывания с целью получения высоких и стабильных урожаев.

Агробиоценозы бобовых и злаковых трав, построенные на использовании адаптированных к условиям выращивания видов, в максимальной степени используют биогенные составляющие: тепло, влагу, солнечную энергию, естественное почвенное плодородие. При этом на производство органического вещества в виде наземной и корневой массы, которое формируется в течение ряда лет, затрачивается минимальное количество антропогенной энергии [2,3,4].

Наряду с высокими хозяйственно-ценными признаками смешанные посевы трав должны в большей степени утилизировать благоприятные факторы окружающей среды, экономно использовать природные ресурсы – влагу и тепло на формирование урожая кормовой массы, а также положительно влиять на показатели почвенного плодородия.

Основным путем повышения биологической продуктивности смешанных агрофитоценозов является снижение конкуренции между компонентами смеси и увеличение кооперации между ними за счет максимального разделения экологических ниш по основным ресурсам роста [5].

У ряда поликомпонентных фитоценозов преимущество перед монокультурой может проявиться за счет симбиотического влияния одного компонента на другой. Компоненты с глубоко проникающей корневой системой мобилизуют из нижних горизонтов элементы минерального питания, влагу в верхние горизонты, где их частично используют компоненты с поверхностно расположенной корневой системой. В злаковых фитоценозах общая и белковая
продуктивность злакового компонента повышается под влиянием биологического азота, трансформированного из атмосферного клубеньковыми бактериями ризосферы бобового компонента [6].

Следовательно, изучение роли одновидовых и смешанных посевов в повышении продуктивности культур (компонентов) является вполне актуальной.

Целью наших исследований было изучить роль смешанных посевов в повышении продуктивности культур (компонентов) по сравнению с монокультурой.

Исследования проводились в предгорной зоне РСО-Алания на Кировском госсортоучастке (колхоз им. К.И. Шанаева), который расположен в зоне неустойчивого увлажнения.

Почвы – черноземы предкавказские карбонатные. По гранулометрическому составу они среднесуглинистые с содержанием гумуса 5%, сумма поглощенных оснований составляет 60 мг-экв. на 100 г почвы с преобладанием кальция и магния. Содержание подвижных форм питательных веществ: азот по Тюрину-Кононовой – 47 мг; фосфор по Мачигину – 9 мг; калий по Гусейнову-Протасову – 217 мг на 1 кг почвы.

В процессе исследований необходимо было подобрать наиболее продуктивные кормовые культуры для формирования смешанных посевов, повышения урожайности их зеленой массы.

Результаты проведенных нами исследований свидетельствуют о том, что продуктивность амаранта и бобовых трав в одновидовых посевах зависела как от вида бобовых трав, так и от климатических условий года.

Урожайность в чистых посевах амаранта зависела от климатических условий года. В засушливом 2011 году урожай зеленой массы бобовых трав колебался от 7,4 т/га (вязель) до 21,8 т/га (донник желтый). При этом наибольший урожай зеленой массы был получен на чистых посевах донника желтого 21,8 т/га и амаранта 17,2 т/га.

Почти одинаковый урожай доли вязель и лядвенец рогатый 7,4 и 7,6 т/га, соответственно. Значительно выше урожай зеленой массы был у клевера и люцерны – 11,7 и 16,4 т/га. Прибавка урожая зеленой массы составила: у амаранта – 9,8 т/га; клевера – 4,3; люцерны – 9,0; донника желтого – 14,4 т/га по сравнению с лядвенцем рогатым (контроль). У вязеля урожай зеленой массы был меньше на 0,2 т/га.

Во влажном 2012, более благоприятном по климатическим условиям, урожайность амаранта и бобовых культур по сравнению с 2011 годом значительно повысилась: амаранта на 3,8 т/га, клевера – 2,4 т/га, люцерны – 4,8 т/га, лядвенца рогатого – 1,7 т/га, донника желтого – 5,8 т/га и вязеля на 3,8 т/га. Прибавка урожая колебалась от 1,9 т/га (вязель) до 18,3 т/га (донник желтый).
В 2013 году урожайность всех культур была выше, чем в 2011 году, но ниже, чем в 2012 году. У амаранта и клевера – на 1,7 т/га, клевера – на 1,0, люцерны – на 1,9; лядвенца – на 1,2; донника – на 4,2, и вязеля на 2,0 т/га.

В годы исследований урожайность амаранта колебалась от 17,2 до 21,0 т/га и превышала урожайность всех изучаемых бобовых трав за исключением донника желтого. В чистых посевах максимальная урожайность получена у донника желтого и изменялась по годам от 21,8 до 27,6 т/га.

Урожайность бобово-злаковых смесей в большей степени зависит от состава компонентов смеси. Некоторые виды злаковых трав сильно угнетают бобовый компонент, в результате урожайность его снижается, а вместе с ней и качество корма травосмеси. Наибольшие урожаи дают такие травосмеси, компоненты которых совместимы.

Преимущество смешанных посевов с бобовыми перед монокультурой проявляется за счет симбиотического влияния одного компонента на другой.

Так, бобовые травы, улучшая условия роста и развития растений, повышали урожайность смешанных посевов. В 2011 году все бобовые травы повысили урожай зеленой массы по сравнению с чистыми посевами амаранта от 0,3 до 12,3 т/га. Амарант + клевер на 8,5 т/га, амарант + люцерна – 5,3; амарант + лядвенец – 5,4; амарант + донник – 12,6 и амарант + вязель на 2,4 т/га. В 2012 году смешанные посевы значительно повысили урожай зеленой массы: амарант + клевер на 7,7; амарант + люцерна – 6,9; амарант + лядвенец рогатый – 6,3; амарант + донник желтый – 20,5; амарант + вязель – 4,1 т/га по сравнению с чистым посевом амаранта. Прибавка урожая зеленой массы колебалась в пределах 2,9-10,2 т/га в 2011 году и 2,2-16,4 т/га в 2012 году по сравнению с амарантом + вязель (контроль).

В 2013 году положительное влияние бобовых трав в смешанных посевах несколько снизилось по сравнению с 2012 годом.

В течение 3 лет исследований урожай зеленой массы смешанных посевов амаранта + клевер, амарант + люцерна и амарант + донник желтый, значительно превышал урожай зеленой массы чистого посева амаранта на в 2011 году: 8,5; 5,3; 12,6; в 2012 году: 7,7; 6,9; 13,9 и в 2013 году: 8,0; 7,5 и 12,1 т/га, что подтверждает хорошую совместимость клевера, люцерны и донника как бобовых компонентов амаранта.

В среднем за 3 года исследований смешанные посевы амаранта с бобовыми значительно превышали урожайность чистых посевов бобовых трав: клевера на 14,3; люцерны – 6,8; лядвенца – 17,2; донника желтого – 10,0 и вязеля на 13,2 т/га.

Следовательно, бобовые травы в смешанных посевах с амарантом образуют значительно большую зеленую массу, чем в чистых посевах. Это следует объяснить тем, что смешанные посевы лучше обеспечены факторами жизнедеятельности в силу большего пространственного и временного объема среды, из которой мобилизуются эти факторы, а также улучшением азотного питания амаранта за счет фиксированного бобово-ризобиальной системой биологического азота.

Следовательно, продуктивность смешанных посевов бобовых трав с амарантом значительно превышает продуктивность одновидовых посевов амаранта на 5,3 – 13,9 т/га и одновидовых бобовых трав на 6,8 – 17,2 т/га.
При этом оптимальными бобовыми компонентами амара́нта по своим биологическим и физиологическим свойствам являются клевер, донник и люцерна.

Библиография:
1. Образцов В.Н., Щедрина Д.И., Дмитриева О.В. Подбор компонентов травосмеси на основе фестулолиума и бобовых трав для создания культурных пастбищ в лесостепи ЦЧР. / Агробиологические аспекты современных технологий возделывания полевых и луговых культур в ЦЧР. Юбилейный сборник научных трудов, посвящ. 95-летию агрофака и 90-летию каф. растениеводства, кормопроизводства и агротехнологий Воронежского ГАУ им. К.Д. Глинки. Воронеж, 2008. – С. 113-117.
РОЛЬ МИКРОБНЫХ ПРЕПАРАТОВ В ПОВЫШЕНИИ УРОЖАЙНОСТИ И КАЧЕСТВА СЕМЯН СОИ
THE INFLUENCE OF MICROBIAL PREPARATIONS ON YIELD AND QUALITY OF SOYBEAN SEEDS

Фарниев А.Т., Кокоев Х.П., Калицева Д.Т.
ФГБОУ ВО Горский ГАУ, Владикавказ, Россия
f-at@yandex.ru

Ключевые слова: микробные препараты, штаммы, инокуляция, опрыскивание, урожайность, качество.

Несмотря на интенсификацию возделывания сельскохозяйственных культур, их урожайность растет медленно, а экологическая обстановка ухудшается довольно быстро. В связи с этим наряду с рациональным развитием и агроландшафтной адаптацией производства, на первый план выходит формирование новой технологической системы, исключающей традиционные шаблоны и обеспечивающей выбор технологий возделывания сельскохозяйственных культур в рамках адаптации природных ресурсов и снижение (или исключение) негативных последствий агрогенных систем [1].

Для реализации генетического потенциала сорта необходимы условия, обеспечивающие потребность растений в ресурсах внешней среды. В то же время технология возделывания культуры должна быть экономически эффективна [2].

При этом забота об экологии, о безопасности жизни людей, как в России, так и в других странах мира заставляет все с большей осторожностью относиться к применению пестицидов и активнее развивать альтернативные методы защиты растений в первую очередь биологический [3].

Поэтому в сельскохозяйственном производстве особую актуальность приобретает проблема изучения и внедрения энерго- и ресурсосберегающих технологий возделывания сельскохозяйственных культур, основой которых является биологизация земледелия. Так, использование в полевых севооборотах азотфиксирующей культуры сои снижает объемы применения дорогостоящих азотных удобрений, а замена химических фунгицидов микробными препаратами - антропогенную нагрузку на почву [4].

Следовательно, при выращивании экологически безопасной продукции сои необходимо использовать безопасные и малоопасные удобрения, средства защиты растений и биостимуляторы. Их применение повышает урожай, качество семян, уменьшает затраты на возделывание и позволяет получать экологически чистую продукцию сои [5]. В связи с этим большое внимание уделяется оздоровлению экологической обстановки и для защиты сельскохозяйственных культур от болезней более активно внедряется биологический метод, позволяющий вести борьбу с болезнями с предпосевного периода.

Из свойств микробных биопрепаратов и биорегуляторов роста особую ценность представляет способность их стимулировать иммунную систему, индуцировать неспецифическую устойчивость растений к различным болезням[6].

В связи с этим целью наших исследований было изучение влияния новых микробных биопрепаратов штаммов 17-1, 38-22 и смеси этих штаммов 17-1+38-22.
на основе местных ассоциативных ризобактерий на урожайность и качество семян сои.

Используемые в полевом опыте микробные препараты созданы в лаборатории микробной биотехнологии кафедры Агрожкиологии и защиты растений Горского ГАУ в сотрудничестве с лабораторией ассоциативных и симбиотических микроорганизмов Всероссийского научно-исследовательского института сельскохозяйственной микробиологии (ВНИИСХМ) г. Санкт-Петербург и депонированы под номерами: штамм 17-1 Pseudomonas fluorescens (№ ВНИИСХМ 622Д); штамм 38-22 Sphingobacterium spiritivorum fluorescens (№ ВНИИСХМ 620Д).

Исследования проводились в Предгорной зоне РСО-Алания на полях ОАО «Беканский» в богарных условиях, предшественник озимая пшеница, экстенсивный фон. Почвы лугово-карбонатные, которые по гумусированности имеют сходство с предкавказскими карбонатными черноземами. В верхнем горизонте они содержат 5% гумуса, мало обеспечены подвижными формами азота и фосфора (20-30 мг/кг), содержат весьма мало подвижного калия (30 мг/кг), рН солевой вытяжки 6,8.

В опыте использовались сорта сои Быстрица 2 и Магева. Повторность опыта четырехкратная. Площадь делянки 36 м2, способ посева — широкорядный с междурядьем 45 см. Норма высева 450 тыс. всхожих семян на гектар, глубина посева 4 см.

Семена перед посевом инокулировали, а вегетирующие растения сои опрыскивали водными растворами микробных препаратов: штамм 17-1, штамм 38-22 и смесь штаммов 17-1+38-22.

Результаты проведенных исследований свидетельствуют о том, что урожайность семян сои в основном определялась влагообеспеченностью в годы исследований, свойствами сорта, и поражаемостью растений болезнями.

Так все исследуемые микробные препараты повышали урожайность сои, но в различной степени. Второй вариант — предпосевная обработка (штаммом 17-1) сорта Быстрица 2 повышала урожай на 0,22 т/га или на 11,8% по сравнению с контролем, тогда как 3 вариант – (штамм 38-22) всего на 0,14 т/га или 7,5%. Более существенная прибавка (0,31 т/га или 16,6%) была получена на варианте 4 (17-1+38-22). Урожайность сорта Магева была несколько ниже, чем сорта Быстрица 2, но эффективность микробных препаратов на посевах этого сорта была аналогичной.

По-видимому, предпосевная обработка семян микробными препаратами уничтожает возбудителей инфекций на поверхности семян и улучшает условия роста и развития растений, что способствует повышению урожай семян. Но в почве локализируется большое количество возбудителей разных заболеваний сои, которые в процессе роста переселяются на поверхность растений и вызывают распространение этих болезней. В дополнение к предпосевной обработке семян опрыскивание вегетирующих растений этими же препаратами предотвращает дальнейшее развитие болезней и повышает урожайность и качество семян.

Так, предпосевная обработка семян и опрыскивание растений штаммом 17-1 (5 вариант) увеличил урожайность на 0,36 т/га по сравнению с контролем и на 0,14 т/га по сравнению с одной предпосевной обработкой семян штаммом 17-1 (2 вариант). Менее эффективной была обработка штаммом 38-22 (6 вариант),
Прибавка составила 0,21 т/га или 11,2% по сравнению с контролем. Наибольшую эффективность показала предпосевная обработка семян и опрыскивание вегетирующих растений смесью штаммов 17-1+38-22 (7 вариант). Прибавка урожая составила 0,4 т/га или 21,4% по сравнению с контролем. Аналогичную эффективность новые микробные препараты проявили при такой обработке и на сорте Магева.

В то же время обработка семян и вегетирующих растений сои существенно влияли на качество семян. Так инокуляция семян сои перед посевом штаммом 17-1 повышала содержание белка на 0,4% и жира на 0,7% (сорт Быстрица 2), а у сорта Магева на 1,2 и 1,1% соответственно. Более существенно влияла обработка семян смесью штаммов 17-1+38-22 4-ый вариант. Содержание белка в семенах повысилось на 1,3% у сорта Быстрица 2 и на 2,1% у сорта Магева, а содержание жира на 1,6 и 1,2% соответственно по сортам.

Предпосевная обработка семян и опрыскивание вегетирующих растений сои штаммом 17-1 повышало содержание белка до 39,4% сорт Быстрица 2 и до 36,7% сорт Магева, а содержание жира до 20% и 18,5% соответственно по сортам. Это выше по сравнению с контролем белка до 2,6% сорт Быстрица 2 и 2,0% сорт Магева, а содержание жира на 1,3% и 1,5% соответственно по сортам. Аналогичное положительное влияние оказала обработка семян и вегетирующих растений штаммом 38-22, но она была менее эффективной.

Самую высокую эффективность проявила смесь штаммов 17-1+38-22 7 вариант при обработке семян и вегетирующих растений. Содержание белка повысилось до 41,3% и 38,0% соответственно по сортам, что выше по сравнению с контролем на 4,5 и 3,3% соответственно по сортам и выше по сравнению с 4 вариантом обработка семян смесью штаммов 17-1+38-22 на 3,2 и 1,2% соответственно по сортам.

Наибольшее содержание жира также было в семенах сои с растений 7 варианта 17-1+38-22 21,3% у сорта Быстрица 2 и 19,5% сорта Магева, что выше по сравнению с контрольным вариантом на 2,6 и 2,2% соответственно по сортам и выше показателей 4 варианта обработка смесью штаммов семян на 1,0% у обоих сортов.

Предпосевная обработка семян и вегетирующих растений сои микробными препаратами (штаммы 17-1, 38-22 и смесь штаммов 17-1+38-22) повышает урожай семян, прибавка составляет от 0,14 до 0,4 т/га. Повышается качество семян, содержание белка до 41,3% (сорт Быстрица 2) и 38,0% сорт Магева и содержание жира до 21,3% (сорт Быстрица 2) и 19,5% (сорт Магева).

Библиография:
2. Синеговская В.Т., Гайдученко А.Н.. Толмачев М.В. Фотосинтетическая деятельность и продуктивность сои в Приамурье при разных способах обработки почвы / Земледелие, №8, 2013., С. 30-32.
3. Фарниев А.Т., Плиев М.А.. Коков Х.П. Поражаемость растений сои болезнями в зависимости от обработки микробными биопрепаратами.: Материалы IV...

ЭНЕРГЕТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ МИКРОБНЫХ ПРЕПАРАТОВ ПРИ ВОЗДЕЛЬВАНИИ ЯРОВОГО РАПСА
THE ENERGY EFFICIENCY OF THE APPLICATION OF MICROBIAL PREPARATIONS IN THE CULTIVATION OF SPRING RAPE

Фарниев А.Т., Аликова И.В., Сабанова А.А.
ФГБОУ ВО Горский ГАУ, Владикавказ, Россия
f-at@yandex.ru

Ключевые слова: рапс, микробные препараты, чистый энергетический доход, энергетическая себестоимость.

Яровой рапс – важнейший резерв увеличения производства растительного масла и кормового белка. Переработка семян безэруковых и низкозинолатных сортов рапса обеспечивает получение высококачественного растительного масла, маргарина, майонеза и других продуктов питания [1].

В процессе переработки из семян рапса наряду с маслом получают жмых и шрот, которые содержат 36-42% кормового белка, хорошо сбалансированного по аминокислотному составу.

Одной тонной рапсового шрота и жмыха можно сбалансировать 7-8 тонн зерновых комбикормов [2]. Кроме того, жмых, шрот служат важным источником энергии и протеина в рационах сельскохозяйственных животных и птицы. В 1 кг семян рапса и жмыха содержится лизина, метионина и цистина в 3-4 раза больше, чем в злаковых культурах.

Высоко ценится рапс как хороший предшественник для зерновых культур, оставляющий соломой и корневыми остатками в почве от 5 до 9 т/га органического вещества [3]. Относительно узкое соотношение углерода и азота в соломе рапса улучшает ее минерализацию, не требуя дополнительно внесения азота (в отличие от соломы зерновых злаков). Остатки рапса после разложения в почве благоприятно влияют на ростовые процессы последующих культур [4].

Имея такие достоинства яровой рапс не нашел широкого распространения в РСО – Алания. Площади посева его за последние пять лет не превышали 2800 га, а урожайность семян не превышала 16-17 ц/га.

При возделывании рапса следует использовать микробные препараты против возбудителей болезней рапса, с их помощью удастся не только снизить химическую нагрузку на поле, но и увеличить производство экологически чистых продуктов питания и кормов.

Научные исследования по разработке ресурсосберегающих технологий возделывания безэруковых сортов рапса на зеленый корм и семена в РСО-Алания не проводились. Поэтому их следует отнести к числу наиболее актуальных и недостаточно разработанных.

Наши исследования проводились в предгорной зоне РСО - Алания на Кировском госсортоучастке (колхоз им. К.И. Шанаева), который расположен в зоне неустойчивого увлажнения.

Почвы - черноземы предкавказские карбонатные. По гранулометрическому составу они среднеуглинистые с содержанием гумуса 5%, сумма поглощенных оснований составляет 60 мг-экв. на 100 г почвы с преобладанием кальция и магния. Содержание подвижных форм питательных веществ: азот по Тюрину-Конюновой - 47 мг; фосфор по Мачигину- 9 мг; калий по Гуссейнову-Протасову - 217 мг на 1 кг почвы.
В полевых опытах изучались сорта ярового рапса: Ярвэлон, Сиеста, Таврион, а также микробные препараты: штамм 17-1; штамм 38-22 и сместь штаммов 17-1+38-22, которые разработаны в лаборатории микробной биотехнологии кафедры Агрозоэкологии и защиты растений Горского ГАУ в содружестве с Всероссийским научно-исследовательским институтом сельскохозяйственной микробиологии (ВНИИСХМ г. Санкт-Петербург) на основе местных рас ассоциативных ризобактерий.

Семена перед посевом обрабатывали штаммами 17-1(400 мл/т), 38-22 (400 мл/т) и сместью штаммов 17-1+38-22 (200+200 мл/т). Вегетирующие растения опрыскивали раствором этих препаратов из расчета 400 л/га в фазу стеблевания. Способ посева рядовой, с междурядьями 15 см. Норма высева – 3 млн. шт. всхожих семян 1 га.

Определение энергетической эффективности применения технологического приема является объективной оценкой. Для этого необходимо учесть все энергоатраты на возделывание культуры или использование технологического приема и выявить степень окупаемости энергоатрат энергосодержанием урожая. Такая энергетическая оценка сорта или приема при необходимости может быть переведена в любые денежные единицы, т. е. дана их экономическую оценку, если известна стоимость одного Гдж.

Для определения энергоатрат мы составили технологическую карту, которая является основным документом для планирования технологических процессов и операций при возделывании ярового рапса. Для определения энергетической эффективности отдельных агротехнических приемов из технологической карты взяли затраты на все виды работ.

Затраты на инокуляцию семян и опрыскивание вегетирующих растений незначительны, основное различие между изучаемыми вариантами состояло из дополнительных затрат на перевозку более высокого урожая, соответственно и живой труд. При расчете энергосодержания урожая были использованы справочные данные по энергосодержанию углеводов - 16,72 ГДж/т, белков - 22,99 ГДж/т, жиров 62 ГДж/т (Посыпанов, Долгодворов, 1995).

Энергоемкость урожая была высокой и составила в варианте с использованием смеся штаммов 17-1+38-22 в целом 685,9 ГДж/га, что на 312,2 ГДж больше, чем в контрольном варианте (сорт Ярвэлон).

Затраты на возделывание ярового рапса складывались из затрат на обработку почвы и посев, семена, микробные препараты, инокуляцию семян и опрыскивание вегетирующих растений, уборку урожая и транспортные расходы.

Разница между вариантами составила лишь в затратах на применение микробных препаратов и перевозку прибавки урожая зеленой массы.

Определил энергетические затраты на выращивание ярового рапса и энергосодержание урожая мы провели энергетическую оценку эффективности возделывания ярового рапса.

В результате было установлено, что наибольшее количество энергии с зеленой массой ярового рапса за три года было получено при предпосевной инокуляции семян и опрыскивании вегетирующих растений сместью штаммов (17-1+38-22) по сорту Ярвэлон 685,9 ГДж/га, сорту Сиеста 507,2 и сорту Таврион 518,1 ГДж/га.

Затраты энергии на инокуляцию семян и опрыскивание растений (15,53 ГДж/га) окупились энергосодержанием урожая. При этом чистый энергетический
доход от обработки микробными препаратами равнялся по сорту Ярвэлон 533,8 – 670,4 ГДж/га, сорту Сиеста 380,3 – 491,7 и сорту Таврион 397,6 – 502,6 ГДж/га, что выше показателей контрольного варианта по сорту Ярвэлон в 1,5 – 1,8, сорту Сиеста в 1,3 – 1,7 и сорту Таврион в 1,3 – 1,6 раза. Коэффициент энергетической эффективности колебался по сорту Ярвэлон от 23,3 на контрольном варианте до 43,2 на лучшем 4 варианте (смесь штаммов 17-3+38-22), от 18,1 до 31,7 и от 20,1 до 32,4 соответственно по сортам Сиеста и Таврион.

Биоэнергетический коэффициент (КПД посева) является отношением энергии, полученной с урожаем к энергозатратам. Применение штаммов 17-1, штаммов 38-22 и смеси штаммов 17-1+38-22 позволило получить на каждый затраченный джоуль энергии: 35,4 Дж 2 вариант (штамм 17-1); 42,1 3 вариант (штамм 38-22); 44,2 Дж 4 вариант (смесь штаммов 17-1+38-22) по сорту Ярвэлон. Несколько меньше были показатели по сортам Сиеста и Таврион – 25,5; 29,2; 32,7 и 26,6; 31,6; 33,4 Дж соответственно. В то время как на контроле они составили лишь – 24,3; 19,2 и 21,1 Дж соответственно по сортам Ярвэлон, Сиеста и Таврион.

Энергетическая себестоимость продукции – это затраты энергии на единицу урожая. Энергетическая себестоимость зеленой массы в контрольном варианте составила по сорту Ярвэлон 0,73 ГДж/т, Сиеста 0,91 и Таврион 0,82 ГДж/т.
Обработка семян и опрыскивание вегетирующих растений штаммом 17-1 (2 вариант) снизило себестоимость продукции на 32,9% по сорту Ярвэлон; по сорту Сиеста на 25,3% и по сорту Таврион 29,3%. Аналогичная обработка штаммом 38-22 (3 вариант) снижала себестоимость зеленой массы на 43,8; 34,1 и 40,3% соответственно по сортам.

Самая низкая себестоимость зеленой массы ярового рапса была при инокуляции семян и опрыскивании растений смесью штаммов 17-1+38-22 (4 вариант) 0,39; 0,53 и 0,47 ГДж/т, соответственно по сортам Ярвэлон, Сиеста и Таврион. Это ниже себестоимости продукции контрольного варианта на 46,6% по сорту Ярвэлон, на 41,8% по сорту Сиеста и на 42,7% по сорту Таврион.

Проведенная энергетическая оценка использования микробных препаратов при возделывании трех сортов ярового рапса показала, что наиболее продуктивным является сорт Ярвэлон, а наиболее эффективным 4 вариант инокуляция семян перед посевом и опрыскивание вегетирующих растений смесью штаммов 17-1+38-22. При небольшом увеличении затрат на этом варианте по сравнению с контролем, полученная энергия увеличивалась в 1,8 раза; чистый энергетический доход увеличился – в 1,9 раз; коэффициент энергетической эффективности – в 1,9 раз; биоэнергетический коэффициент – 1,8 раз; энергетическая себестоимость снизилась в 1,9 раз.

Библиография:
2. Виноградов Д.В., Жулин А.В. Методические рекомендации по возделыванию ярового рапса в Рязанской области. Рязань, ГУ Рязанский НИПТИ АПК, 2008. – 40 с.
ИСПОЛЬЗОВАНИЕ ПОЗИТИВА КЛИМАТИЧЕСКИХ ИЗМЕНЕНИЙ В СЕЛЬСКОХОЗЯЙСТВЕННОМ ПРОИЗВОДСТВЕ УМЕРЕННО-ЗАСУШЛИВОЙ СТЕПИ

USE OF A POSITIVE OF CLIMATIC CHANGES IN AGRICULTURAL PRODUCTION OF THE MODERATE AND DROUGHTY STEPPE

Грязнов А.А.
Институт агроэкологии – филиал ФГБОУ ВО Южно-Уральского государственного аграрного университета, Россия
granal@yandex.ru

Ключевые слова: климат, температура воздуха, осадки, гидротермический коэффициент, сроки сева зерновых культур.

До сравнительно недавнего времени в нашей стране имело место суждение, что с ростом энерго- и материально-финансовой обеспеченности сельскохозяйственное производство становится совершенно независимым от природы. Теперь же все чаще признается, что климат – это не только природный, но и экономический фактор, а проблема взаимоотношений человека с природой была и останется навсегда.

Факт изменения климата в виде повышения тепло- и влагообеспеченности земледельческих районов планеты отмечается во многих научных публикациях. Накапливаясь во времени, тепло способно нарушать естественный ход природных явлений. Однако процессы изменения климата приводят не только к засухам, наводнениям и другим отрицательным явлениям, но могут положительно сказываться на сельскохозяйственном производстве [1-6].

Подтверждение сказанному находим в исследованиях погодных условий, сложившихся за 83 года наблюдений, в умеренно-засушливой степи за период 1931-2013 гг. (Карабалыкская опытная станция, Костанайская область). Здесь главным лимитирующим фактором получения устойчивых урожаев сельскохозяйственных культур является выраженный дефицит влаги, который может усугубляться высокими температурами воздуха.

Среди множества факторов, обусловливающих продуктивность растений, выделили два – осадки и температуру воздуха, а также полученный на этой основе комплексный показатель обеспеченности ростений влагой и теплом – гидротермический коэффициент (ГТК), где 0,4 и менее – сухо; 0,4-0,7 – очень засушливо; 0,7-1,0 – засушливо; 1,0-1,5 – влажно; более 1,5 – избыточно влажно [7]. Использованные материалы метеонаблюдений данного научного учреждения рассматривается через призму 12-и летних циклов солнечной активности.

Результаты исследований указывают на потепление климата как в теплый, так и в холодный периоды года. С каждым циклом происходит заметное накопление тепла – среднегодовая температура воздуха поднялась с 1,0 °С в период 1931-1942 гг. до 4,9 °С в 2003-2013 гг. Температура воздуха в данной экологической нише неуклонно повышается в среднем на 0,03 °С в год.

Подобные результаты получены также в Нижнем Поволжье, где в период 1970-2000 гг. зафиксировано потепление на уровне 0,04-0,05 °С в год [5].

Потепление в той или иной степени выразилось во все без исключения месяцы, но особенно в холодное время года. Сравнение помесячного
температурного режима последнего цикла с первым обнаруживает среднемесячное потепление в холодный период года (ноябрь-март) на 2,0 °С (–11,9 °С против –13,9 °С), в теплое время года (апрель-октябрь) – на 1,4 °С (13,1 °С против 11,7 °С).

Метеорологи считают, что активация циклонической деятельности приводит не только к потеплению климата, но и к увеличению выпадения осадков, особенно в холодное полугодие. Наши данные также указывают – очевиден рост выпадения среднегодового количества осадков.

По циклам произошло увеличение выпадения осадков с 275,2 мм в период 1931-1942 гг. до 366,5-367,0 мм в последние годы наблюдений. Среднегодовая прибавка осадков составила 1,1 мм.

Средние показатели ГТК свидетельствуют об улучшении условий для возделывания засухоустойчивых сортов зерновых культур, т. к. эти значения со второго цикла наблюдений стали выше 0,73 (таблица 1).

Таблица 1 – Гидротермическая ситуация во время активной вегетации растений по циклам наблюдений (Карабалыкская СХОС)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Май</td>
<td>0,39</td>
<td>0,56</td>
<td>0,41</td>
<td>0,78</td>
<td>0,62</td>
<td>0,89</td>
<td>0,77</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>Июнь</td>
<td>0,91</td>
<td>0,87</td>
<td>0,74</td>
<td>0,95</td>
<td>0,84</td>
<td>0,86</td>
<td>0,66</td>
<td>0,83</td>
<td></td>
</tr>
<tr>
<td>Июль</td>
<td>0,88</td>
<td>1,03</td>
<td>1,27</td>
<td>1,20</td>
<td>1,23</td>
<td>0,86</td>
<td>0,90</td>
<td>1,05</td>
<td></td>
</tr>
<tr>
<td>Среднее</td>
<td>0,73</td>
<td>0,82</td>
<td>0,81</td>
<td>0,98</td>
<td>0,90</td>
<td>0,87</td>
<td>0,78</td>
<td>0,84</td>
<td></td>
</tr>
</tbody>
</table>

* – неполный цикл (11 лет).

Данные свидетельствуют об улучшении гидротермической ситуации по время вегетации яровых зерновых культур – средние многолетние значения ГТК возрастает от 0,63 до 1,05.

Наблюдается улучшение условий для начала вегетации яровых зерновых культур в мае месяце – значения ГТК неуклонно повышались от 0,39 до 0,89.

Среднемноголетнее значение ГТК июня месяца на уровне 0,83 означает смягчение гидротермической ситуации по сравнению с обстановкой предыдущего месяца. Еще более комфортные условия характерны для июля месяца. При среднемноголетнем ГТК на уровне 1,05 отмечено варьирование значений 0,86-1,27.

Характеристика августа указывает на возросшую возможность успешного завершения налива зерна и более благоприятного начала уборки в посевах раннего срока уже в первой половине этого месяца. Последующие осенние месяцы по-прежнему остаются недостаточно стабильными для завершения уборочных работ.

Основной объем уборки площадей, засеянных в поздние сроки, совпадает с сентябрем месяцем, с характерными для него пониженной среднесуточной температурой воздуха (13,6 °C) и достаточным среднемесячным увлажнением (27,4 мм). Невысокий температурный уровень октября (5,5 °C) на фоне 25,5 мм осадков предопределяет неблагоприятные условия для уборки урожая уже в этом месяце. Еще менее благоприятным является ноябрь месяц с отрицательной температурой воздуха (–3,2 °C) и осадками на уровне 19,8 мм, хотя в практике
региона почти ежегодно значительная часть уборочных работ приходится на октябрь и очень часто продолжается в ноябре месяце.

Анализ метеоситуации показывает, что изменения климата привели к более комфортным условиям для зерновых культур ранних сроков сева. Для современных реестровых сортов яровых культур засушливые условия с ГТК, близким к 0,7, перестали быть опасными, что позволяет проводить посев с наступлением физической спелости почвы – (конец апреля-начало мая).

Закономерен вывод – в складывающейся метеоситуации необходимо в полной мере использовать весь позитив процесса изменения климата. Более полной реализации этого положения могут способствовать сорта с положительной реакцией на ранние сроки посева. В целом изменение климата в регионе пока не дает повода для серьезного беспокойства в сфере сельскохозяйственного производства. Более того, эти изменения можно считать позитивными, так как они открывают новые возможности не только по срокам сева яровых зерновых культур, но и расширения посевов озимой пшеницы, которая для региона все еще остается нетрадиционной культурой.

Библиография:

4. Немцев С.Н., Шарипова Р.Б. Тенденции изменений климата и их влияние на продуктивность зерновых культур в Ульяновской области // Земледелие. – 2012. – С. 3-5.
5. Пряхина С.И. Формирование урожая зерновых культур и прогнозирование его величины и качества в условиях Нижнего Поволжья: Автореф. Дис. ... докт. с.-х. наук. – Саратов, 2000. – 41 с.
ОПТИМИЗАЦИЯ ФОСФОРНОГО ПИТАНИЯ ЯБЛОНЕВЫХ САДОВ В УСЛОВИЯХ ЗАДЕРНЕНИЯ

ОПТИМИЗАЦИЯ ФОСФОРНОГО ПИТАНИЯ ЯБЛОНЕВЫХ САДОВ В УСЛОВИЯХ ЗАДЕРНЕНИЯ

OPTIMIZATION OF PHOSPHORUS NUTRITION OF APPLE ORCHARDS IN THE CONDITIONS OF SOD

Гурин А.Г., Ревин Н.Ю.
Орловский государственный аграрный университет, Орел, Россия
gurin10159@yandex.ru

Ключевые слова: фосфорное питание, сады, задернение, рост.

Важным элементом для растений в т.ч. плодовых является фосфор. Этот элемент входит в состав нуклеопротеинов, составляющих клеточное ядро др. органических соединений таких как, фитин, лецитин, аденинтрифосфорная кислота АТФ и др. При увеличении содержания фосфора в почве, повышается интенсивность фотосинтеза растений. Фосфор влияет на рост корневой системы, увеличивает ее физиологическую активность.

В растениях одни соединения фосфора превращаются в другие. Так, например, органические соединения этого элемента при прорастании семян переходят в минеральные, а в точках роста снова превращаются в органические. При созревании семян происходит приток минеральных фосфатов, которые откладываются в форме органических фосфорных соединений (Рубин С.С., 1983).

Немаловажная роль фосфора состоит в ускорении созревания плодов. Как правило переход растения от фазы роста к фазе образования плодовых органов (у плодовых это составляет от 2-3 лет до 10 и более) сопровождается усиленным поступлением больших количеств фосфора (Рубин С.С., Копытко П.Г., Прасол В.И., 1981; Резвякова С.В., 2013; Резвякова С.В., Гурин А.Г, 2013). Положительно влияет фосфор на образование в растениях сахаров, крахмала, жиров, белков. У бобовых культур формирование симбиотического аппарата и его активность, прежде всего, зависит от уровня обеспеченности почвы подвижным фосфором. Наибольшее формирование происходит при повышенном содержании фосфора в почве (Хамоков Х.А., 2006; , 2014; Гурин А.Г., Ревин Н.Ю., 2014).

Длительное применение фосфорных удобрений, по мнению Л.С. Малюковой и Н.В. Козловой (2013) оказывает положительное влияние на устойчивость к неблагоприятным метеорологическим условиям вегетационного периода, что обеспечивает многолетнюю стабильность урожайности насаждений.

Многие жизненные функции растений зависят от фосфора. Он ускоряет переход растений из вегетативной фазы в репродуктивную, усиливает способность клеток удерживать воду, что повышает устойчивость растений к засухе и действию низких температур (Резвяков А.В., Гурин А.Г., Резвякова С.В., 2014; Gurin A.G., Sycheva I.I., Rezyuyakova S.V., 2014). Это особенно важно для плодовых культур, в том числе и для яблони. Фосфорное питание оказывает положительное влияние не только на величину урожая, но и на качество. Фосфор способствует накоплению сахаров в плодах. Следовательно, изучение фосфорного питания имеет значение.

Нами проводилось определение содержания подвижного фосфора в зависимости от доз внесения минеральных удобрений на фоне различных систем содержания почвы (таблица). Исследование проводилось в течение трех лет.
Полученные результаты показали, что внесение полного минерального удобрения оказывает положительное влияние на содержание подвижного фосфора в почве. Так, например, в 2013г. В слое почвы 0-40 см содержание подвижного фосфора на черном пару при внесении N64P64K64 составило 118,7 мг/кг, при увеличении дозы удобрений в полтора раза, количество его составило 121,1 мг/кг, и при внесении двойного количества удобрений – 123,1 мг/кг. В слое почвы 0-100 см также наблюдалось увеличение в почве подвижного фосфора при внесении повышенных доз удобрений.

На задерненных участках также наблюдалось повышение количества подвижного фосфора при внесении минеральных удобрений. Так, в слое почвы 0-40 см содержание подвижного фосфора при внесении N64P64K64 составило 113,0 мг/кг. Внесение полуполовой и двойной дозы удобрений повысило содержание фосфора всего на 3,3-5,5 мг/кг соответственно.

На черном пару содержание подвижного фосфора было несколько выше, чем на задернении. Это связано с отсутствием в этом варианте травянистой растительности, которая оказывает конкуренцию в потреблении фосфора деревьям яблони.

<table>
<thead>
<tr>
<th>Слой почвы, см</th>
<th>Черный пар</th>
<th>Сплошное задернение</th>
<th>НСП05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N64P64K64</td>
<td>N96P96K96</td>
<td>N128P128K128</td>
</tr>
<tr>
<td>2013г.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-40</td>
<td>118,7</td>
<td>121,1</td>
<td>123,1</td>
</tr>
<tr>
<td>0-100</td>
<td>100,1</td>
<td>102,3</td>
<td>104,4</td>
</tr>
<tr>
<td>2014г.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-40</td>
<td>117,6</td>
<td>121,0</td>
<td>123,6</td>
</tr>
<tr>
<td>0-100</td>
<td>93,9</td>
<td>95,8</td>
<td>97,1</td>
</tr>
<tr>
<td>2015г.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-40</td>
<td>127,8</td>
<td>132,0</td>
<td>133,6</td>
</tr>
<tr>
<td>0-100</td>
<td>110,3</td>
<td>114,7</td>
<td>116,2</td>
</tr>
<tr>
<td>В среднем за 3 года</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-40</td>
<td>121,4</td>
<td>124,7</td>
<td>126,8</td>
</tr>
<tr>
<td>0-100</td>
<td>101,4</td>
<td>104,3</td>
<td>105,9</td>
</tr>
</tbody>
</table>

Аналогичные результаты получены в 2014 и 2015гг. На черном пару содержание подвижного фосфора было выше, чем на задернении. Внесение удобрений также способствовало накоплению его как в слое 0-40 см, так и в метровом слое.

В среднем за три года получены следующие данные. Содержание подвижного фосфора в слое почвы 0-40 см в зависимости от доз внесения удобрений на черном пару составило 121,4-126,8 мг/кг, в слое 0-100 см – 101,4-105,9 мг/кг.

При сплошном задернении количество подвижного фосфора было несколько меньше и составило в слое 0-40 см 115,1-120,5 мг/кг, в слое 0-100 см 96,8-100,8 мг/кг. В метровом слое почвы содержание подвижного фосфора на задернении не зависело от дозы внесения удобрений. Это связано с перехватом в верхних слоях почвы поступающего вместе с минеральными удобрениями фосфора, травянистой растительностью.
Таким образом, внесение минеральных удобрений в междурядьях сада обеспечивает увеличение подвижного фосфора в почве, особенно в верхних горизонтах. На задерненных участках травянистая растительность оказывает конкуренцию деревьям яблони в потреблении фосфора. Оптимальной дозой внесения минеральных удобрений в обеспечении деревьев яблони является N128P128K128.

Библиография:
ПРОДУКТИВНОСТЬ И КАЧЕСТВО РАЗЛИЧНЫХ СОРТОВ ФАСОЛИ В ЗАВИСИМОСТИ ОТ ПРИМЕНЕНИЯ ГЕРБИЦИДА

EFFICIENCY AND QUALITY OF DIFFERENT VARIETIES OF BEANS, DEPENDING ON THE APPLICATION OF THE HERBICIDE

Адиньяев Э.Д., Хугаева Л.М.
ФГБОУ ВО Горский ГАУ, Владикавказ, Россия
luda_689@mail.ru

Ключевые слова: фасоль, удобрения, гербицид, сорт.

В последние годы фасоль становится все более популярной культурой, как по России, так и особенно на Северном Кавказе из-за высокого содержания легкоусвояемого белка. Поэтому целью данной работы было изучение реакции новых, высокопродуктивных сортов фасоли Зинаида и Варвара (по сравнению с районированным сортом Осетинская 302)) на внесение гербицида и удобрений в лесостепной зоне Северной Осетии. Исследования проводились на опытном поле СКНИИГиПСХ.

На контроле (без внесения гербицида) у сорта Осетинская 302 сбор урожая семян составил 1,58 т/га. От обработки посевов гербицидом он увеличился на 0,42 т/га. Внесение удобрений привело к повышению урожая семян на 0,70 т/га. Сочетание удобрений с внесением гербицида обеспечило прибавку урожая - 1,05 т/га.

Наибольшим сбором урожая семян отличился сорт Зинаида. На контроле она составила 1,83 т/га, т.е. на 0,25 т/га выше сорта Осетинская 302. При двукратной обработке гербицидом урожай семян возрос на 0,49 т/га. На удобренном фоне (N30P90K60) продуктивность фасоли оказалась выше - на 0,97 т/га, а при сочетании удобрений с гербицидом - на 1,37 т/га. У сорта Варвара урожайность была ниже, чем у сорта Зинаида, но выше районированных сортов - Осетинская 302. На контроле она составила 1,67 т/га, т.е. на 0,21 больше, чем у сорта Осетинская 302 и на 0,16 т/га меньше, чем у сорта Зинаида. Внесение гербицида дало прибавку 0,43 т/га. При внесении удобрений прибавка урожая семян оказалась выше и составила по вариантам: N30P90K60 - 0,78 т/га и N30P90K60+ агритокс (до всходов + по всходам) - 1,14 т/га.

Наибольшую продуктивность по всем сортам обеспечивал вариант с N30P90K60 + агритокс (до всходов + по всходам), который составил: Зинаида – 3,20 т/га, Варвара – 2,81 т/га и - Осетинская 302 – 2,63 т/га. Это сказалось и на качестве семян.
Анализ литературных источников показал, что бобы овощной фасоли (лопатки) в технической спелости содержат до 6% белка, в зрелых семенах его количество достигает 17 – 32%. В наших исследованиях этот показатель у сорта Осетинская 302 при двукратной обработке посевов гербицидом повышался на 2,0 % и составлял 21,6 %. По содержанию белка новые перспективные сорта фасоли Варвара и Зинаида отличались от контрольного незначительно. Так, на контроле (без удобрений и гербицида) содержание белка в семенах у новых сортов составило 21,3 и 20,6 %, что выше, сорта Осетинская 302 соответственно на 1,0 и 1,7 %. Двукратная обработка посевов гербицидом сопровождалась повышением белка в семенах на 1,9 и 3,1 %. Внесение удобрений (N30P90K60) положительно влияло на содержание белка в семенах. Оно повысилось у сорта Осетинская 302 на 0,9, Зинаида на 2,1 и Варвара на 1,5 %, а при сочетании с гербицидом на: 2,8; 5,8; 4,8 %.

Если содержание белка увеличивалось от обработки посевов гербицидом и удобрений, то содержание клетчатки и жира при этом снижалось.

Таким образом, самое высокое содержание белка, жира и клетчатки отмечено у сорта Зинаида – 27,1 %, 2,3 % и 8,7%, соответственно, а высоким содержанием золы – 4,3 % - выделился сорт Осетинская 302.

Как известно, тяжелые металлы имеют свойство накапливаться как в почве, так и в выращенной продукции, а затем попадать в организм человека. Наибольший интерес представляют те металлы, которые используются в производстве и накапливаются в организме человека, представляя серьезную опасность. К ним относят цинк, медь, марганец, железо и др.

Наибольшим содержанием меди (4,9 мг/кг) и цинка (27,6 мг/кг) выделялся сорт Варвара, который был ниже ПДК соответственно на 5,1; 82,4 мг/кг. Более высокое содержание марганца – 17,1 мг/кг и железа – 49,0 мг/кг отмечено у сорта Зинаида, что оказалось ниже ПДК на 32,9 и 61,0 мг/кг.

Следовательно, изучаемые приемы повышали продуктивность и качество всех сортов фасоли, не оказывая отрицательного влияния на содержание тяжелых металлов в семенах. Не представляя при этом угрозу для здоровья и жизни человека.

Библиография:
ВЛИЯНИЕ ЗАСОРЕННОСТИ ПОСЕВОВ НА УРОЖАЙ И КАЧЕСТВО ПЕРСПЕКТИВНЫХ СОРТОВ ФАСОЛИ В ЛЕСОСТЕПНОЙ ЗОНЕ СЕВЕРНОЙ ОСЕТИИ

INFLUENCE OF CONTAMINATION OF CROPS ON THE YIELD AND QUALITY OF PROSPECTIVE VARIETIES OF BEANS IN THE FOREST-STEPPE ZONE OF NORTH OSSETIA

Хугаева Л.М.
ФГБОУ ВО «Горский ГАУ, Владикавказ, Россия
luda_689@mail.ru

Ключевые слова: фасоль, гербицид, сорняк, сорт.

Известно, что получение высококачественных урожаев всех сельскохозяйственных культур невозможно без борьбы с сорной растительностью, присутствие которой на полях резко снижет урожай и качество возделываемой культуры.

Исследования проводились на опытном поле СК НИИ горного и предгорного сельского хозяйства. Объектом исследований являлись три сорта фасоли – Осетинская 302 (контроль), Зинаида и Варвара. В опыте изучалось влияние сроков внесения гербицида (Агритокс из расчета 1 л/га) на засоренность посевов, продуктивность и качество различных сортов фасоли.

Климатические условия здесь благоприятны для выращивания фасоли. Почвы - выщелоченные черноземы с содержанием гумуса 4,5-6,0 %, которые отличаются высоким содержанием валовых и доступных форм N и P2O5, а по содержанию K2O –среднеобеспеченны. Реакция почвенной среды слабокисла.

Анализируя полученные данные необходимо отметить, что во время появления всходов на контрольном варианте количество сорняков составило 11 шт./м2, с массой – 0,023 кг/м2. При внесении гербицида (нормой 1,0 л/га) до всходов эти показатели снизились соответственно до 7 шт./м2 и 0,016 кг/м2, а при послевсходовом внесении их количество было - 9 шт./м2 с массой 0,019 кг/м2. Однако при сочетании до всходового внесения с послевсходовым отмечалось значительное снижение как количества сорняков (5 шт./м2), так и их массы (0,013 кг/м2). В дальнейшие периоды роста и развития культуры также наблюдалось увеличение, как количества сорняков, так и их массы.

Однако при созревании отмечено сокращение количества сорняков, но с существенно большей их массой. Если на контроле в этот период насчитывалось 32 шт./м2, а их масса составляла 0,367 кг/м2, то при до всходового внесении гербицида эти показатели снизились и составили 15 шт./м2 и 0,283 кг/м2, а на варианте с послевсходовым внесением соответственно - 20 шт./м2 и 0,342 кг/м2.
При сочетании до всходового с послевсходовым внесением гербицида количество сорняков составило всего 14 шт./м² с массой 0,270 кг/м². Такое состояние посевов объясняется тем, что к концу вегетации нижние листья фасоли начинают подсыхать, сорняки получают дополнительное освещение и продолжают накапливать свою биологическую массу.

Следовательно, внесение гербицида до всходов снижает засоренность посевов фасоли в среднем на 41 %, а их массу на 19 %. Самый высокий эффект по уничтожению сорняков установлен при двукратном применении Агритокса – до всходов и после всходов. При этом количество сорняков снизилось до 47 %, а их масса на 24 %.

Выявлено, что сбор урожая семян в значительной степени зависел от внесения гербицида. Так, от внесения гербицида в разные сроки сбор урожая семян у сорта Осетинская 302 (контроль) повышался от 0,14 до 0,33 т/га. Наибольшим сбором урожая на всех вариантах выделялся сорт Зинаида. На контроле ее урожайность составила 1,36 т/га, что выше на 0,15 т/га по сравнению с контрольным сортом Осетинская 302 и на 0,08 т/га – сорта Варвара. До всходового внесении гербицида обеспечило прибавку 0,27 т/га (19,9 %); после всходового внесении – 0,18 т/га (13,2 %); сочетание до всходового внесения с после всходовым – 0,38 т/га (27,9 %).

У сорта Варвара урожайность была ниже, чем у сорта Зинаида, но выше контрольного сорта - Осетинская 302. Если на контроле (без гербицида) урожайность сорта Варвара составила 1,28 т/га (на 0,07 т/га выше сорта Осетинская 302), то внесение гербицида в разные сроки обеспечивало прибавку урожая семян от 0,13 до 0,35 т/га.

Выявлено, что на качество семян также, существенное влияние оказывало внесение гербицида. Так, у сорта Осетинская 302 содержание белка на контроле составило 13,8 %, что ниже на 3,2 %, чем у сорта Зинаида и на 4,0 %, чем у сорта Варвара. Обработка посевов гербицидом до появления всходов фасоли способствовала повышению содержания белка на 1,9-2,2 %, а по всходовое внесение гербицида увеличивала этот показатель на 1,9-4,7 %. Однако наивысший показатель отмечен на варианте с внесением Агритокса (до всходов + по всходам) и составил по сортам 16,8 %, 22,0 % и 21,6 %, соответственно.

По остальным показателям (содержание клетчатки, золы и жира) значительных различий не отмечалось. Следует отметить, что высоким содержанием белка (22,0 %) отличился сорт Зинаида на варианте с внесением Агритокса (до всходов + по всходам); клетчатки (7,6%) – Варвара на контроле; золы (4,3 %) – Осетинская 302 при внесении Агритокса (до всходов + по всходам); жира (2,6 %) – Варвара при внесении Агритокса (до всходов + по всходам).

Рациональное применение химических методов защиты растений от сорной растительности, позволяет сокращать не только количество сорняков на посевах, но и способствовать заметному увеличению урожая семян различных сортов фасоли.

Таким образом, новые перспективные сорта фасоли Зинаида и Варвара отличаются более высококачественными семенами, чем контрольный сорт Осетинская 302.
ТЯЖЁЛЫЕ МЕТАЛЛЫ В ПОЧВАХ ОРЛОВСКОЙ ОБЛАСТИ
HEAVY METALS IN SOILS OF THE OREL REGION

Игнатова Г.А., Котова Е.О.
Орловский государственный аграрный университет, Орел, Россия

gali-i@bk.ru

Ключевые слова: тяжелые металлы, плодородие, почвы, продукция.

Тяжелые металлы опасны тем, что они обладают способностью накапливаться в живых организмах, включаться в метаболический цикл, образовывать высокотоксичные металлорганические соединения, изменять формы нахождения при переходе от одной природной среды в другую, не подвергаясь биологическому разложению.

Среди тяжелых металлов приоритетными загрязнителями считаются свинец, кадмий, цинк, главным образом потому, что техногенное их накопление в окружающей среде идет высокими темпами. Эта группа веществ обладает большим сродством к физиологически важным органическим соединениям. Из перечисленных токсикантов особо токсичными являются: ртуть, свинец и кадмий. Они являются наиболее опасными загрязнителями окружающей среды.

Загрязнение почвы подвижными формами тяжелых металлов является наиболее актуальной, так как в последние годы проблема загрязнения окружающей среды приняла угрожающий характер. В сложившейся ситуации необходимо не только усилить исследования по всем аспектам проблемы тяжелых металлов в биосфере, но и периодически подводить итоги для осмысления результатов, полученных в разных, часто слабо связанных между собой отраслях науки [1, с.18].

Объектом данного исследования являются антропогенные почвы сельскохозяйственного назначения, прилегающие к отвалу шлаков АООТ «Цветные металлы и сплавы» на территории Подмокринского сельского поселения в районе п. Большое Думчино Орловской области.

Цель проводимого исследования установить содержание подвижных форм тяжёлых металлов (свинец и кадмий, цинк, медь) на землях сельскохозяйственного назначения.

Исследования почвенных образцов на содержание подвижных форм тяжёлых металлов проводили в ФГБУ «Орловский референтный центр Россельхознадзора» в 2014 году.

В целях контроля загрязнения почвы металлами отбор проб почв производили в соответствии с: ГОСТ 17.4.3.01 [4, с.2-3; 5, с. 5-7] в 10 точках на окраинах полей озимой пшеницы и озимой ржи, расположенных в 10 м от шламоотвала.

Анализ подвижных форм металлов заключается в обработке проб ацетатно-аммонийным буферным раствором с pH 4,8 и последующем определении металлов в полученном растворе атомно-абсорбционным анализом на спектрофотометре [3, С 7-9].

Известно, что содержание тяжелых металлов в 30-сантиметровом слое почв в расчете, на единицу площади отражает тот потенциальный запас, который доступен для корней растений.
Изучение почвенных образцов показало наличие в них свинца и кадмия в разных концентрациях (табл. 1). Предельно допустимые концентрации: кадмия – 1,0 мг/кг, свинца – 6,0 мг/кг.

Таблица 1 - Содержание подвижных форм кадмия и свинца в почвенных образцах, 2014 г.

<table>
<thead>
<tr>
<th>Название элемента</th>
<th>Пробная площадка</th>
<th>Содержание элемента, мг/кг (± m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cd</td>
<td>0,82±0,12</td>
<td>1,03±0,09</td>
</tr>
<tr>
<td>Pb</td>
<td>2,65±0,64</td>
<td>6,24±1,54</td>
</tr>
</tbody>
</table>

Установлено, что запасы подвижных форм тяжелых металлов в почве сельскохозяйственных угодий Подмокринского сельского поселения, расположенных в непосредственной близости от шламохранилища, подвержены существенному варьированию: Cd - от 0,04 до 32,97; Pb - от 0,03 до 327,32 мг/кг почвы. Наибольшие превышения предельно-допустимых норм изучаемых тяжелых металлов отмечены в опытных образцах 5-ти пробных площадок. На 3-й площадке содержание Cd в почве превышает норму в 32 раза, Pb – в 54,5 раз, на 4-й превышение составляет: Cd – в 32 раза, Pb – 39,5 раз, на 7 площадке – Cd – в 31 раз, Pb – в 151,6 раз.

Проведя анализ почвенных образцов на содержание подвижных форм цинка и меди, определено, что данные элементы находятся во всех образцах (табл.2). По действующим нормативам [3, с.5-9] для изучаемых элементов приняты следующие предельно-допустимые концентрации содержания подвижных форм в почве: Zn - 23,0 мг/кг, Cu – 3,0 мг/кг. Превышение допустимых значений по содержанию в почве цинка на пробных площадках 3, 4, 7 составляет соответственно 15,6; 24,0 и 24,8 раз. В пробах было выявлено превышение ПДК Cu в 1,2 раза на 10-й пробной площадке, в остальных превышения нормы нет.

Таблица 2 - Содержание подвижных форм кадмия и свинца в почвенных образцах, 2014 г.

<table>
<thead>
<tr>
<th>Название элемента</th>
<th>Пробная площадка</th>
<th>Содержание элемента, мг/кг (± m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Zn</td>
<td>10,09±3,61</td>
<td>10,01±3,84</td>
</tr>
<tr>
<td>Cu</td>
<td>1,60±0,26</td>
<td>1,65±0,27</td>
</tr>
</tbody>
</table>

При выращивании сельскохозяйственных культур на почвах, подверженных воздействию антропогенного загрязнения, необходимо проводить постоянный контроль за содержанием тяжелых металлов в продукции. Мерой предотвращения поступления TM в пищевые цепи является перевод этих почв на выращивание технических культур [7].

Для улучшения эколого-географического состояния почвы на данном участке рекомендуется выращивать растения-аккумуляторы тяжелых металлов и управлять экологическими свойствами самой почвы посредством ее искусственного конструирования.
Необходимо проводить систематический мониторинг и выявлять наиболее загрязненные и опасные для здоровья населения участки.

Библиография:
1. Антонова Ю. А., Сафонов М. А. Тяжёлые металлы в городских почвах //Фундаментальные исследования. №11. 2007. С. 18.
2. Вавилова В.М., Терехова В.А. Условия отбора и подготовки проб для некоторых методов биотестирования вод, почв и отходов. Учебно-методическое пособие. [Текст]. М.: МГУ. ИПЭЭ. 2009. 28 с.
4. ГОСТ 17.4.3.01 (СТ СЭВ 3847-82). Охрана природы. Почвы. Общие требования к отбору проб. М.: Стандартинформ, 2008. 4 с.
5. Методические рекомендации по проведению полевых и лабораторных исследований почв и растений при контроле загрязнения окружающей среды металлами. М.: Гидрометеоиздат, 1981. С. 9 – 33.
ENVIRONMENT AND PROSPECTS OF SUNFLOWER PRODUCTION
ЭКОЛОГИЯ И ПЕРСПЕКТИВНОСТЬ ПРОИЗВОДСТВА ПОДСОЛНЕЧНИКА

Karpov I.A.
Orenburg State Agrarian University, Orenburg, Russia
karpovivan95@mail.ru

Key words: ecology, production, sunflower, organic production.

The farm "Karpov" is in the Perevolotsky region of the Orenburg region, a site of the main arable lands in 60 km from the regional center. In 38 km from economy the gas-processing and helium plants, largest in Europe, which intensively work more than 30 years are located. The wind rose of the region shows lack of the movement of air masses from plants towards farmlands of economy. In economy work is carried out with farmlands on shortly rotational crop rotations (recommended in the region). As the culture, main on profitability, the sunflower over the last ten years acts. Current trends among the population of Russia speak about the growing need for products of the organic plan [1-8]. Considering proximity from the regional center, existence of good base of storage of the grown-up production. For farm is perspective to conduct search of ways and planning of production of products of organic "brand", for delivery in places of the greatest potential demand.

References:
1. Соколов М.С., Глазко В.И. Минимизация негативных социально-экологических последствий техногенеза в агросфере России (в развитие ноосферной концепции В.И. Вернадского) // Агрохимия. 2015. № 3. С. 3-9.
2. Соколов М.С., Глинушкин А.П., Торопова Е.Ю. Средообразующие функции здоровой почвы – фитосанитарные и социальные аспекты // Агрохимия. 2015. № 8. С. 81-94.
4. Иваницкая Л.В., М. С. Соколов, В.И. Глазко Безальтернативность и факторы социально-экологической козволюции биосферы в ноосферу (в развитие биосферных идей В.И. Вернадского) // Biogeosystem Technique. 2015. V.3, p. 29-49.
THE USE OF GROWTH STIMULANTS AND MAGNETIC WATER TO IMPROVE THE QUALITY OF SEEDLINGS OF ONION

Khvan O.V.
Volgograd State Agrarian University, Volgograd, Russia
parmelia@mail.ru

Key words: onion, humates, magnetized water, seedlings, methods of growing.

The cultivation of onions in the southern region of Russia is a priority direction of development of vegetable production [1]. High yields of this crop can be achieved by application of intensive technologies, including drip irrigation, fertilizer system and protective measures. For early production of this crop is increasingly being used as a seedling method of planting. However, the onion develops a weak root system, which leads to the long term survival of plants and reduced growth in the initial stage of development and extends production of commercial product 5-10 days [2, 3, 4, 5, 6].

Growing seedlings in boxes, and cassette has several disadvantages. In the first case, damaged the delicate root system when is transplanting. In the second, the roots wrapped in a ring on the bottom of the tray cell and inhibit the growth when transplanting in the open ground. In this regard, the actual direction is to develop techniques to encourage development and strengthening of the roots of onion plants in seedling method. Of interest determine the effect of humic preparations and irrigation by magnetized water on the quality of onion seedlings with the aim of improving the technology of its production. These factors are poorly studied in intensive technologies of cultivation, which leads to the novelty of the chosen direction of work.

The experiments were carried out on the basis of the economy "Khvan V. A." the Gorodishchensky district of the Volgograd region and the Volgograd state agricultural university the greenhouse in 2010-2015 onion Seedlings were grown in trays and cassettes. As the substrate used is enriched by nutrients and neutralized peat soils. For revealing the effect of the humates used the solutions of preparations Lignohumate, Uniflor growth, Uniflor micro, Extrasol, Humate +7 at the concentrations recommended by the manufacturers.

To determine the effect of magnetic water were delivered to the two experiments. First on the germination of seeds in the laboratory with a magnetized and magnetized water. It is second – for watering seedlings and onion magnetic geomagnitnoi water. To obtain magnetic water used installation produced by "Magnetic technologies-Dubai".

In the research the following methods are used. In the laboratory we determined the germination (GOST R 52171-2003), energy of germination in solutions of different concentrations for cultivation. Germination energy was taken into account according to GOST 24933.0-81. When conducting the experiments, recommendations Belik V. F. (1992) [7].

Laboratory experiments identified the most effective drugs (Humate+7, Lignohumate and Floranet), which increased the germination 6,5-17,7 per cent. It is noted that these tools also improve the germination Luke 2,9-8,2 per cent. However, the greatest effect is achieved from the application of microbiological preparation Extrasol. It sprouted onion a seed was 1,6 times faster in comparison with the control. The greatest positive impact on the preparations of root growth was of the seed germ. The best feature of starting growth was observed in the variants of Humate+7 and Extrasol.
When growing seedlings of hybrid onion Bonus F1 revealed positive effects of drugs on the basis of humic compounds. Leaf tissue and root system on different respond was to drugs of different composition.

The effect of their use is expressed in increasing the growth of leaves 7,9-13,3% 11,2 root of 22,9%. Intensive growth of leaves observed after application of Uniflor micro and roots – Humate+7. The weight of the plants and their individual organs under the influence of drugs increased in proportion to their length.

Structured water in a magnetic field produced in a special installation, does not consist of large and small liquid crystals (clusters) that occur in normal water, and separated from individual molecules. This increases its solvent ability that increases physiological activity in the tissues of plants that facilitate the penetration of water and dissolved ions through the membranes and cell walls. This feature has positively influenced when growing seedlings of onion. The differences in the growth of plants, water magnetized and not magnetized water, which reaches a 13,3 – 27,1 per cent and increases with age.

Thus, to improve the quality of seedlings of onion can be recommended the use of the drug Extrasol when soaking seeds. In the phase of 2-4 true leaves to promote the growth of onion plants should be preparatom Uniflor micro, and for the development of the root system to use with a solution of Humate+7. The same positive effect was achieved by watering the seedling onions magnetized water. These techniques can be recommended for production in intensive technologies of cultivation of onion, both showed high efficiency in experiments.

References:
6. Филин В.И., Гаращенков А.А. Урожайность сортов и гибридов лука репчатого при разных системах удобрения на мелиорированных каштановых почвах // Картофель и овощи, № 3, 2010. – С.64-70.
A POTENTIAL ULTRA-EARLY COTTON IN SOUTHERN RUSSIA

Kimsanbaev O.K., Konotopskay T.M.
Volgograd State Agrarian University, Volgograd, Russia
agrosad@inbox.ru

Key words: cotton, selection, genetic analysis, ultra early maturity, growing period.

Cotton is a strategic crop: production of cotton forms the basis of various industries and has important economic value.

Cotton relates to heat-loving crops in connection with which its cultivation is possible only in the southern regions of the country. In this respect promising is the Volgograd region, the area which has sufficient resources of heat (the sum of effective temperatures 2500-2800 0C) and reclamation systems for watering plants in dry season. In the development and intensification of domestic cotton production a significant role of selection, of receiving ultra-early varieties with high productivity, baleneological with high quality and quantity of fiber.

The purpose of the scientific substantiation of directions is breeding work with Gossypiom hirsutum L. and the assessment of new ultra-early varieties of cotton PGSH 1 for conditions of light-chestnut soils of the Volgograd region.

The object of studies was the new line, and promising cultivars of domestic and foreign breeding cultivated species G. hirsutum L.

The seeds of the L -396 2 b medium staple cotton, as well as elite parental varieties PGSH 1 and Uzbek breeding varieties were cultivated in three repetitions according to the scheme of placing of plants 60x20x1. Each option is placed on the plot holes 25.

During the growing period have been necessary phenological observations, surveys of harvest, number of bolls per plant by September 1. With each experience option on the reps took 25-boxed test samples, with the first 2-4 fruiting branches. In the period of flowering all the flowers of hybrid plants F1 and the original form shmooballs to 5-6 fruit-bearing branches.

The quality of the cotton fiber was measured in the laboratory technology ZAO Kamyshinsky textile mill. Morphobiological description of all involved in the original experiment varieties and lines was carried out in late August, with preliminary calculation plants on the options. We determined the length of the vegetation period, it was noted the date of opening of the first bolls 50% of plants. The harvest was carried out by individual selections, samples and charges.

The data obtained in the processing of the analysis of variance proved that differences between variants. The smallest length of the vegetation period was observed in grades P-1 9070 and PGSH, Matures within 123,0-124,0 days, the rest of varieties the length of the vegetation period reached 126.0-133 days. Separate the hybrids showed less characteristic, such as L – 396 B2 x S-6530, S-6530 x-6532, PGSH 1 x P-6770, ripening 104,0 for-112,3 per day. From direct 15 studied hybrids in 4 cases manifested a positive heterosis, in 3 cases at intermediate inheritance was dominated by the best parent, in two cases - the worst parent. Negative heterosis showed a 4 hybrid, which was promising from a breeding point of view.

Genetic analysis in model Griffing revealed significant differences in the ACS and SCS. The highest negative GCA effect was revealed in the most early maturing varieties.
C-9070 and PGSH 1, that is, their absolute values were consistent with the effects of ACS. In this case a negative value is seen as a positive phenomenon.

Correlation analysis of variance ACS to SCS variances allows us to assume that all varieties of this trait are controlled by non-additive effects of genes. The location of varieties along the regression line allows speaking about the prevalence of genotypes in early maturing varieties PGSH 1 and p - 9070 mostly dominant genes, P-6532 mainly dominant genes. In grades P-6770 and p-6530 this feature is mainly controlled by recessive genes and for the variety L -396 B2 predominantly recessive genes.

The study of combining ability and inheritance on grounds that determines the output fiber, the productivity of raw cotton per plant, length of vegetation period of a number of lines and varieties of G. hirsutum L. showed that these features are structurally complex, polygenic type of inheritance. Length of growing period is closely related to the height of the tab of the first fruiting branch. Fiber quality is correlative to the function of its length and thinness.

Research and identified promising breeding point of view, hybrid material, irrespective of the species and forms, combines required the researcher group of quantitative traits that are weakly correlated to each other or are inherited independently from each other.

References:
ПРИМЕНЕНИЕ РЕГУЛЯТОРОВ РОСТА КАК ФАКТОР ПОВЫШЕНИЯ УРОЖАЙНОСТИ СОЙ
USE OF GROWTH REGULATORS AS FACTOR IN INCREASING THE YIELD OF SOYBEAN

Кирсанова Е.В., Гвалдова В.В., Зорькин Е.В.
Орловский государственный аграрный университет, Орел, Россия
agro-decanat@orelsau.ru

Ключевые слова: регулятор роста, урожайность, соя, развитие растений.

Основным резервом увеличения производства сои в России является, наряду с резким расширением посевных площадей, использование достижений науки и передовой практики для значительного роста урожайности этой ценной культуры. В агротехнологическом аспекте это, прежде всего, использование факторов интенсификации (орошение, удобрение, новая техника, пестициды, рострегуляторы) и ускорение сортосмены на новые, более продуктивные и адаптивные сорта [1].

Регуляторы роста растений – это природные и синтетические органические вещества, способные стимулировать или подавлять рост и развитие растений, не приводя их к гибели. Природные регуляторы роста – фитогормоны, образуются в самих растениях в небольших количествах и необходимы для их жизнедеятельности. К ним относятся ауксины, гибереллины, цитокины, брациностероиды, стимулирующие рост и развитие растений (например, биосинтез РНК, ДНК, белков и т.п., рост и деление клеток); абсцидозная кислота и эндогенный этилен - ингибиторы этих процессов, способствующие созреванию, увяданию и переходу в состояние покоя. Кроме фитогормонов в растениях образуются также так называемые вторичные ростовые вещества: флавоноиды, аминокислоты, липиды, карбоновые кислоты (например, галловая и коричная кислоты - ингибиторы роста), алкалоиды, ненасыщенные лактоны, терпеноиды и др.

Многие фитогормоны и др. вещества со свойствами регуляторов роста образуются также в процессе жизнедеятельности грибов и бактерий, что может быть использовано для получения их в промышленном масштабе. Так, методом биотехнологии получают гиберелловую кислоту; культивированием соответствующих микроорганизмов получен ряд высокоэффективных регуляторов (фузикокцины). Наибольшее практическое значение имеют синтетические регуляторы роста. Классифицируют синтетические – регуляторы роста по их соотношению с фитогормонами: аналоги ауксинов и цитокининов, антиауксины и антагонисты цитокининов, ингибиторы транспорта ауксинов и биосинтеза гибереллинов и вещества, выделяющие этилен или способствующие его образованию в растениях [3].

Для улучшения развития растений регуляторами роста обрабатывают посевной и посадочный материал. Регуляторы роста используют главным образом в виде растворов и дисперсий путем опрыскивания растений в стадии вегетации, обработки семян, клубней, черенков и т.п. и лишь изредка - путем внесения в почву [4].
Применение регуляторов роста растений, которые обладают разносторонним спектром действия, способствует значительному снижению объемов применения средств защиты растений от вредителей и болезней. Их комплексное применение совместно с фунгицидами дает основание для снижения норм расхода последних на 25-30%, что позволит получать экологически безопасную и более дешевую продукцию.

Обладая антистрессовыми свойствами, регуляторы роста повышают устойчивость растений к низким и высоким температурам, избыtkу и недостатку воды, засухе и заморозкам. Вот почему широкое применение регуляторов роста растений является важным фактором повышения эффективности технологии возделывания полевых культур [5].

Большое значение имеет воздействие регуляторами роста растений на семена и растения сои при вегетации с целью стимулировать их на интенсивный рост и полноценное развитие. Так, обработка семян препаратами Агростимул, Лариксин позволяет стимулировать их развитие и получить полные всходы на 1-2 дня раньше контрольных (без обработки). При этом, интенсивность роста проростков в лабораторных условиях в варианте с обработкой семян Лариксином и с предпосевной обработкой семян Агростимулом была выше, чем на контрольном варианте, на 18%.

Предпосевная обработка агрохимикатами Сиавид бор, Сиавиннер 818 и регулятором роста Карвитол ускоряла прорастание семян сои, усиливающая интенсивность роста и развитие проростков сои. Также отмечается повышение энергии прорастания до 5% и лабораторной всхожести до 3-8%, увеличение длины корешков проростков (на 4 день после посева) до 20% за счет их применения. Обработка семян агрохимикатом Сиавиннер 818 с нормой расхода 100 мл/т, агрохимикатом Сиавид бор с нормой расхода 100 мл/т и регулятором роста Карвитол, способствовала получению дружных всходов в полевых условиях.

Повышение урожайности и качества зерна в большей степени проявляется при сочетании обработки семян и обработок при вегетации культуры. Так, предпосевная обработка семян Лариксином и опрыскивание растений: 1-е – в фазе начала цветения, 2-е – через 12-14 дней после первого опрыскивания, обеспечили увеличение урожайности на 0,24 т/га или 18,9%.

Предпосевная обработка семян препарратом Агростимул и опрыскивание растений в тех же фазах привели к росту урожайности на 18,1 %. Опрыскивание посевов регулятором роста растений Агростимул в фазе полных всходов и в фазе бутонизации - начала цветения повысило урожайность на 0,31 т/га или 24,4%. Двойное последовательное воздействие на сою этого препарата способствовало повышению качества зерна: содержание протеина возрастило до 42,5%, содержание жира снижалось на 0,5-1%.

Лучшие результаты по урожайности отмечены в варианте с применением предпосевной обработки семян агрохимикатом Сиавиннер 818 с нормой расхода 100 мл/т в сочетании с опрыскиванием им посевов в фазе полных всходов и в фазе начала цветения с расходом препарата 900 мл/га. Превышение по урожайности в этом варианте составило в среднем за три года исследований 0,23 т/га или 14,5%.

Предпосевная обработка семян сои Карвитолом в дозе 25 мл препарата способствует увеличению урожайности на 0,16 т/га или 10,1% в среднем за три года.
Рост урожайности сои за счет применения препаратов Сиавид бор, Сиавиннер 818 и Карвитол обусловлен повышением продуктивности растений за счет увеличения количества бобов (на 10-21%), озерненности боба (на 4-6%), количества семян с растения (на 13 – 15%) и массы семян с растения (на 14 - 20%).

Применение регулятора роста растений Альбит при обработке семян сои также показало положительное влияние на рост и развитие проростков. Всхожесть и энергия прорастания семян в вариантах с применением Альбита выше, чем на контроле на 3-7 %. Явно выражен эффект стимуляции, проявляющийся увеличением линейных размеров проростков. На 4 сутки после посева в вариантах с применением Альбита проростки имели длину корешков на 15-31% и ростков на 9-14 % больше, чем на контроле. Полевая всхожесть за счет применения препарата Альбит при обработке семян возросла на 5 %. В полевых условиях установлено, что предпосевная обработка семян сои препаратом Альбит приводит к достоверному повышению урожайности данной культуры. За счет применения препарата Альбит при обработке семян и опрыскивании посевов урожайность сои повысилась на 0,22 т/га или 12,4% по отношению к контролю. При этом количество семян с растения увеличилось на 13-21 %, число бобов с растения на 8-13%, масса семян с растения до 20%.

Применение регуляторов роста при возделывании сои позволяет стимулировать развитие растений, за счет чего повышается урожайность зерна и улучшаются показатели его качества.

Библиография:
4. Влияние биорегуляторов на морфофизиологические показатели и структуру урожая растений гречихи разных сортов Ковальчук Н.С., Куликова Т.И., Прусакова Л.Д., Фесенко А.Н. Агрохимия, 2006, № 9, стр 46-51.
THE DYNAMICS OF SOYBEAN SPREAD OF IN THE WORLD

Гвальдова В.В., Кирсанова Е.В.
Орловский государственный аграрный университет, Орел, Россия
agro-decanat@orelsau.ru

Ключевые слова: соя, белок, распространение, мировой опыт.

Среди всех возделываемых в мире сельскохозяйственных культур соя является одной из самых высокобелковых. Семена сои содержат в среднем 38-42% белка (у некоторых сортов до 50%), 19-27% масла и до 30% углеводов. Аминокислотный состав протеина семян сои близок к белку куриных яиц, а масло относится к легкоусвояемым и содержит жирные кислоты, не вырабатываемые организмом животных и человека. История возделывания этой культуры берет свое начало по некоторым данным еще с XI века до н. э. в Китае. Дальнейшее распространение сои происходило по всему миру. В России массовое распространение соя получила на Дальнем Востоке в 30-х годах двадцатого столетия.

Мировая площадь посевов сои перешагнула отметку 100 млн га. Выращивают ее в основных земледельческих регионах 90 стран. Мировое производство этой культуры достигает свыше 250 млн. т. Ежегодно увеличиваются темпы мирового производства сои. В настоящее время самые большие посевые площади сои находятся в США (около 35-40% от мировых), Бразилии (20%), Аргентине (12%), Китае (12-13%) и Индии (8%). В Европе сосредоточено около 2% от общей площади мировых посевов сои, а в России – 0,7-1%. По объемам производства сои в мире лидируют США и Бразилия, обеспечивающие соответственно около 50 и 20% от валового сбора сои в мире. В Европе производство сои невысокое - около 1,5% от мирового объема производства [4].

О значимости и ценности сои в мировом хозяйстве свидетельствует факт неуклонного возрастания её производства в мире. Если в предвоенные годы валовое производство соевого зерна составляло 10-12 миллионов тонн, то за последние 2 тридцатилетия оно утроилось и среднегодовой объем его за 1991-1995 гг. достиг 119 млн. т. Не прекращается прирост его и в последующие годы – до 192 млн. т за первое пятилетие ХХI века и до 230 млн. т. – за второе, а в 2010 году в мире произведено 262 млн. т.

За последние 15 лет объёмы производства сои в мире удвоились, то есть ежегодный средний прирост их составил 7%. Таких темпов увеличения производства не было в истории земледелия ни по какой-либо другой культуре. Анализируя данные ФАО ООН за 1948-1998 гг., можно отметить, что за этот полувековой период валовое производство зерна пшеницы и риса возросло в 3,4 раза, кукурузы – в 4,3 раза, ячменя – в 2,4 раза, а сои – в 9,8 раза (с 16 до 156 млн. т). В последний 5 лет соя по мировым объёмам производства зерна стабильно вышла на 4-е место после пшеницы, риса и кукурузы. Она стала ведущей полевой культурой, играющей стратегическую роль в развитии агропромышленного комплекса. С её помощью успешно решается проблема восполнения ресурсов полноценных растительных белка и масла [2].
В структуре посевных площадей России соя занимает 2 % от всех посевов, а среди масличных культур – 14 %. Несмотря на возрастающие потребности в продуктах переработки соевых бобов, их производство в Российской Федерации до сих пор осуществляется на недостаточном уровне. Средняя урожайность сои за 5 лет – 1,3 т/га. Поскольку соя в основном возделывается в борщаговских условиях, то урожайность зависит от природно-климатических условий года.

Характерной особенностью развития соеводства является тот факт, что за последнее пятидесятилетие произошел резкий скачок в перемещении географии выращивания этой культуры с азиатского на американский континент. Если в довоенные годы лидером по производству соевого зерна в мире был Китай, производивший 80-85% мирового объёма его, то уже в послевоенные (1948-1952) годы на его долю пришлось 46 %, через четверть века – всего 20 %, а к 2001-2005 гг. – только 8,6 %. Соответственно возрастил вклад США в производство этой ценной культуры. Если в предвоенные годы в этой стране было произведено 10 % мирового объёма соевого зерна, то в послевоенные (1948-1952) – уже 46 %, а в 1971-1975 годы – 63 %, то есть 2/3 мирового валового сбора сои приходилось на США. В последующий период, несмотря на дальнейшее наращивание производства сои, позиции этой страны были потеснены расширением посевов сои в Бразилии и Аргентине, занявших после США соответственно второе и третье места по производству соевого зерна в мире. Среднегодовое производство сои за 2001-2005 гг. составило в США 77,1 млн. т (40,2 % от мирового объёма), в Бразилии 47,5 (24,7 %) и в Аргентине 32,4 млн. т (16,9 %). За последний 40-летний период доля Китая в мировом валовом сборе соевого зерна сократилась в 4 раза, США – в 1,5 раза, а Бразилии и Аргентины возросла соответственно в 24 и 330 раз.

Констатируя постоянное наращивание объёмов производства сои в мире, нельзя не отметить и то обстоятельство, что это происходит не только за счёт расширения посевных площадей, но и по причине возрастания урожайности. Но основное значение имеет здесь первый фактор. Так, за отмеченный 75-летний период площади под этой культурой в мире расширились с 11 до 98 млн. га, или в 8,9 раза, а средняя урожайность увеличилась с 11 до 23 ц/га или в 2,1 раза. При этом нельзя обойти стороной то обстоятельство, что основные (3/4 мировых) посевы сои размещены в благоприятных почвенно-климатических условиях для этой культуры – штатах кукурузного пояса США и хорошо увлажненных зонах латиноамериканских стран, где ресурсы тепла и влаги, а также плодородные почвы позволяют получать максимальные урожаи этой культуры. Конечно, на возрастание урожаев повлияло и использование научных достижений при возделывании сои. Американскими селекционерами методом трансгенной инженерии созданы сорта этой культуры, устойчивые к глифосатным гербицидам, что позволило решить проблему надежной защиты её посевов от всех видов сорных растений. Такими сортами сейчас заняты основные (более 80%) площади посева сои на американском континенте. Учитывая возможные негативные последствия этого глубинного вмешательства человека в природную генную структуру растений, что широко дискусируется в научных кругах, в развитых странах Европы настороженно относятся к импорту из Америки ГМ-соевого зерна и продуктов его переработки. И в этом аспекте российская соя, сорта которой созданы традиционным методом гибридизации и отборов, может иметь предпочтение на европейском рынке.
В Европе производится только около 1,5 % мирового объёма сои. Здесь лидируют Россия и Украина, в которых годовые объёмы производства соевого зерна достигают в последние годы 1,2-1,7 млн. т. Во Франции, Болгарии, Румынии, Испании соя выращивается на десятках тысяч гектаров и объёмы производства её не превышают 100 тыс. т. Абсолютным лидером по урожайности сои является Италия, где на площади более 100 тыс. га получают по 37-40 ц/га с гектара её зерна. Такие рекордные урожаи достигнуты здесь благодаря орошению и интенсификации возделывания этой культуры. Характерно, что в европейских странах, за исключением Украины и России не отмечается расширение площадей под этой культурой. Однако это объяснимо не игнорированием сои, а ограниченными ресурсами пахотных земель, первоочередно используемых для выращивания традиционных продовольственных и кормовых культур: кукурузы, пшеницы, ячменя, подсолнечника, рапса, овощей. На полях России и Украины есть простор для продвижения сои и условия, способствующие получению стабильно высоких урожаев её, что создаёт предпосылки превращения этих стран из импортеров в экспортеры соевых продуктов в другие страны Европы [2].

Традиционными зонами выращивания сои в РФ являются: Дальний Восток (Приморский, Хабаровский края, Амурская область) и, в меньшей степени; Северный Кавказ (Краснодарский, Ставропольский края, Ростовская область, республика Адыгея, Северная Осетия, Кабардино-Балкарская, Ингушская и Чеченская Республики).

В последнее время значительно возрос интерес к возделыванию сои в Орловской области. Отмечено резкое возрастание площадей, занимаемых соей в области за последние годы. В 2001-2006 годах общая площадь, занимаемая этой культурой в области, была незначительной. Она не превышала 0,7 тыс. га (от 0,08 до 0,7 тыс. га). Однако уже в 2009 году значение этого показателя возросло до 4,2 тыс. га. В 2010 посевная площадь сои в Орловской области составила 15,5 тыс. га, к 2011 году этот показатель слегка уменьшился, до 14,7 тыс. га. К 2012 году площади, занимаемые в Орловской области соей, значительно увеличились и составили 25,0 тыс. га. Рост площадей под соей продолжился и в 2013 году (до 26 тыс. га). Резкое возрастание площадей под соей в Орловской области было связано и с ростом урожайности этой культуры. По этому показателю область догнала традиционные регионы, а в 2011 году и продемонстрировала самую высокую урожайность по стране [1,3].

С учетом явно недостаточного производства сои для удовлетворения потребностей населения нашей планеты в высококачественных дешевых растительных белке и масле (сои производится в расчете на душу населения в 10 раз меньше, чем зерновых злаковых культур) для сбалансирования пищевых и кормовых раций этими жизненно необходимыми компонентами, несомненно весьма значимым остается дальнейшее развитие соеводства в мире, о чем свидетельствуют и устойчивые тенденции его роста [2].

Библиография:
3. Кирсанова, Е.В. Экзогенная регуляция роста и развития растений сои в условиях Орловской области // Кирсанова Е.В., Злотников А.К., Цуканова З. Р., Васильчиков А. Г., Чекалин Е.И., Можарова И.П, Головина Е.В., Дарюга К.В. - Вестник ОрелГАУ- № 3 – 2012.

ВЛИЯНИЕ ПРИМЕНЕНИЯ ИЗВЕСТКОВАНИЯ И МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА УРОЖАЙНОСТЬ И КАЧЕСТВО НА ОЗИМОЙ ПШЕНИЦЫ В УСЛОВИЯХ ОРЛОВСКОГО РАЙОНА

EFFECT OF LIMING AND APPLICATION OF FERTILIZERS ON YIELD AND QUALITY OF WINTER WHEAT IN THE CONDITIONS OF THE OREL DISTRICT

Кондрашин Б.С.
Орловский государственный аграрный университет, Орел, Россия
agro-decanat@orelsau.ru

Ключевые слова: озимая пшеница, удобрение, известкование почв, земледелие.

В ЦЧР около 80% пашни имеет избыточную кислотность почв, что препятствует получению высоких стабильных урожаев. Известкование почв – необходимые условия получения качественной продукции на загрязнённых радионуклидами почвами Орловской области. В связи с этим была поставлена задача изучить влияние известкования в сочетании с применением минеральных удобрений на урожайность и качество озимой пшеницы и изменение агрохимических показателей почвы. Опыт был заложен в 2010-2014 гг. в КХ «Борискина» Орловского района Орловской области: Почвы опытного участка – оподзоленный чернозем среднесуглинистый, гумус 5,1%, P2O5 -9,2 , K2O -10,1 мг на 100г почвы, рН -5,2, Нг-6,1мг на 100г. Высевали сорт Московская 39. Предшественник озимой пшеницы –чистый пар. Агротехника возделывания общепринятая для Орловской области . Наблюдение за ростом и развитием растений озимой пшеницы показали, что применение известкования в сочетании с минералами удобрения не оказало влияния на продолжительность фаз развития и длину вегетационного периода. Известкование и минеральные удобрения оказали положительные влияние на число сохраняющихся растений перед уборкой. Они повысили выживаемость растений на 4,1-7,3% по сравнению с контролем. Наибольшее число сохранившихся растений перед уборкой было в варианте (CaCO3) 1,0 ГК.+ 3 ц диаммофоски -383 растения на 1 м2 против 354 на контроле. На других вариантах число сохранившихся растений составило 361-372 растений на 1 м2 . Измерение длины стебля озимой пшеницы показало, что наименьшие показатели отмечены на варианте контроль- 107 см. а наибольшие – на вариантах (CaCO3) 1,0 ГК.+ 3 ц диаммофоски и (CaCO3) 2,0 ГК.+ 3 ц диаммофоски, соответственно 121 и 123 см. отмечено закономерность наблюдалось о показателе длина колоса. Большое влияние известкование в сочетании с минеральными удобрениями оказалось на такие показатели, как число зерен в колосе и масса зерна с колоса. Наибольшие показатели были отмечены на вариантах (CaCO3) 1,0 ГК.+ 3 ц диаммофоски и (CaCO3) 2,0 ГК.+ 3 ц диаммофоски, соответственно 29,3 и 29,7 шт и 1,02 и 1,01 против 23,1 шт и 0,87 г на контроле. Масса 1000 семян является важным показателем их полноценности. Известкование и минеральные удобрения способствовали улучшению формирования растений и наливу семян. Прибавка по сравнению с контролем составила 0,8-4,7 г. Внесение извести минеральных удобрений о сравнению с
контролем повысило натурную массу зерна на 4,3-21,4 г, содержание белка в зерне – на 0,8-1,5%. Более высокие показатели были получены при внесении извести в сочетании с минеральными на вариантах 5 и 6, соответственно 762; 763 г/л и 13,2; 13,8%.

Внесение карбоната кальция снижало природную кислотность в слое 0-40 см на 0,23 рН. Гидролитическая кислотность понизилась при использовании карбоната калия на 1,54 мг экв на 100 г почвы. Одинарная доза карбоната кальция обеспечила повышение степени насыщенности основаниями с 81,8 до 90,2% по сравнению с контролем.

Библиография:
ВЛИЯНИЕ УДОБРЕНИЙ И РИЗОТОРФИНА НА РОСТ И ПРОДУКТИВНОСТЬ ДОННИКА ЖЕЛТОГО В УСЛОВИЯХ ПРЕДГОРНОЙ ЗОНЫ РСО-АЛАНИЯ
EFFECT OF FERTILIZER AND RIZOTORFINA ON THE GROWTH AND PRODUCTIVITY OF CLOVER YELLOW IN THE MIDST OF THE FOOTHILL ZONE RNO-ALANIA

Козырьева А.Х., Алборова П.В.
ФГБОУ ВО «Горский государственный аграрный университет»
ironlag@mail.ru

Ключевые слова: донник желтый, инокуляция, симбиотическая азотфиксация, фосфор, бор, штамм, урожай.

Для решения данных проблем кормопроизводства необходим поиск альтернативных кормовых культур с высоким коэффициентом размножения и несложным семеноводством. Особый интерес в этой связи представляет донник желтый. Он обладает рядом преимуществ, которые определяют его перспективность для укрепления кормовой базы и повышения плодородия почв.
Донник желтый хорошо вписывается в севооборот, после его уборки почва обогащается подвижными элементами питания, особенно азотом, что в сочетании с ранней уборкой делает его незаменимым предшественником для многих сельскохозяйственных культур [1].
Однако в настоящее время донник желтый не распространен на территории Северного Кавказа. В связи с этим целью наших исследований являлось изучение влияния основных элементов технологий возделывания на продуктивность донника желтого в условиях Северного Кавказа[2].
Изучение влияния таких факторов как обеспеченность растений фосфором, бором, инокуляция семян перед посевом ризоторфином на реализацию азотфиксирующей активности и белковой продуктивности донника желтого является актуальным в сельскохозяйственном производстве РСО-Алания.
Исследования проводились в предгорной зоне Северного Кавказа в колхозе «Кавказ» Кировского района.
Схема опыта:
1. Контроль – естественное плодородие почвы для выявления эффективности изучаемых приемов.
2. Р – достаточная обеспеченность фосфором.
3. Р + В – достаточная обеспеченность фосфором и бором на фоне высокой обеспеченности калием и молибденом.
4. Р + В + инокуляция – изучение эффективности заводского штамма ризобий по сравнению со спонтанными штаммами на фоне достаточной обеспеченности фосфором и бором.
О состоянии посевов сельскохозяйственных культур, благоприятности поченно-климатических условий, уровне агroteхники, использовании других резервов, можно судить по динамике роста и развития растений в течение
вегетации, а также в различные годы исследований [3]. Высота растений существенно зависит от используемых агроприемов в год посева [4].

Наш исследования показали, что лучшая обеспеченность биологическим азотом в варианте 4 с инокуляцией семян на фоне достаточной обеспеченности фосфором и бором позволила посевам донника достичь 85 см в высоту, что превышает показатели контрольного варианта на 35 см, 2-го варианта достаточная обеспеченность фосфором на 15 см, и 3-го варианта достаточная обеспеченность фосфором и бором на 25 см.

В наших опытах, наступление фенологических фаз развития растений в основном зависело от уровня обеспеченности элементами минерального питания и в меньшей степени – от климатических условий года. Это обусловлено тем, что в годы исследований климатические данные мало отличались от среднемноголетних, и весь период исследований отличался относительной выравненностью условий [4].

В обоих заложенных опытах (2001 и 2002 г.г.) всходы появлялись на 10…11 день. Донник отличается очень медленным ростом на начальных стадиях развития. Так, фаза стеблевания на всех вариантах наступала только через 35…37 дней после полных всходов и незначительно (1…2 дня) отличалась в зависимости от режима минерального питания. Активный рост растений отмечался после фазы стеблевания, в связи с чем, и межфазные периоды сократились. Так, между фазами стеблевания и ветвления период составил всего 2 недели, фаза бутонизации наступала примерно через один месяц.

После укоса, который на всех вариантах был проведен в первой декаде августа, растения донника медленно отрастили вплоть до третьей декады октября, без существенного развития надземной массы. В этот период шло формирование и закладка почек возобновления.

В середине апреля следующего года из сформировавшихся в пазухах листьев почек началось отрастание растений. В этот период различий между вариантами не наблюдалось, по-видимому, из-за недостаточной температуры, слабой азотфиксацией и так как клубеньковые бактерии находились ещё в состоянии покоя.

К фазе ветвления деятельность ризобий возобновилась и растения, лучше обеспеченные азотом, активнее росли и развивались, о чем свидетельствует сокращение межфазного периода (стеблевание – ветвление) на 1…2 дня.

Ко времени укосной спелости разница между вариантами стала более существенной, при этом в варианте с инокуляцией семян фаза ветвления наступала раньше чем в естественных чистых посевах на 4…5 дней и на 1…2 дня раньше, чем в посевах с использованием только минеральных удобрений (фосфорных и борных). К концу пользования посевами донника желтого лучшая обеспеченность растений биологически связанным азотом позволила провести укос на 5…7 дней раньше, чем в контрольном варианте. Это обстоятельство весьма выгодно, особенно, при использовании донника в качестве предшественника для озимых колосовых, а также некоторой промежуточных культур.

Укос растений произвели в фазу бутонизации, когда посевы имели максимальную высоту – 80,2…111,3 см.

На второй год пользования посевами отрастание растений начиналось примерно во второй декаде апреля, при этом высота растений была на уровне 18…19 см. Максимальная высота растений в наших опытах отмечалась к фазе бутонизации (1 укос) второго года жизни растений и достигала 120 см в варианте с наиболее активной азотфиксацией растений. Превышение над контролем
достигало примерно 25 см. На 2-ом варианте превышение над контролем составило 15 см, а на третьем – 10 см.

После первого укоса динамика роста растений имела схожую тенденцию, только с несколько меньшей амплитудой колебаний. Так, ко второму укосу максимальная высота растений на четвертом варианте составила 107,7 см, а на контрольном варианте – 79,4 см. Эти показатели на 12...15 см меньше показателей первого укоса.

Донник желтый хорошо вписывается в севооборот, после уборки почва обогащается подвижными элементами питания и особенно азотом, что в сочетании с ранней уборкой делает его незаменимым предшественником для многих сельскохозяйственных культур.

Самый высокий урожай сена в среднем за один укос был получен в год посева донника желтого и составил в 2001 году 4,73...6,79 т/га, в 2002 году – 4,10...5,55 т/га. При этом улучшение факторов среды достоверно повышает урожай сена. Максимальное положительное влияние на урожай сена донника желтого оказала инокуляция семян ризоторфином на фоне улучшения режима фосфорного и борного питания. В 2002 г. за вегетацию здесь было получено около 9 т/га сена или на 33,6% больше, чем в естественных посевах донника.

В среднем в первый год жизни растений посевы донника желтого формируют наибольший урожай – 4,4...6,2 т/га сена.

На второй год пользования урожай посевов донника несколько снижается, однако в результате полученных 2 укосов продуктивность донника на второй год выше и достигает 6,0...8,3 т/га в среднем за годы исследований.

Наибольший урожай сена формируется при предпосевной инокуляции семян ризоторфином на фоне оптимизации фосфорного и борного питания. Продуктивность посевов при этом увеличивается до 9 т/га, что на 33,6 % превышает продуктивность контрольных вариантов.

Выводы:
1. Применение фосфорных и борных удобрений улучшало рост растений и развитие донника желтого на 25 см по сравнению с контрольным вариантом.
2. Оптимизация фосфорного, борного питания и предпосевная инокуляция семян ризоторфином увеличивала высоту растений в фазу бутонизации – на 30...35 см, сокращала межфазные периоды и ускоряла сроки наступления укосной спелости посевов на 5...7 дней.
3. Оптимизация факторов среды для роста и развития растений донника желтого позволяет получить за вегетацию до 9 т/га сена и освободить поле на 7 дней раньше, что является важным фактором при возделывании озимых колосовых культур.

Библиография:
2. Фарниев А.Т., Посыпанов Г.С. Биологическая фиксация азота воздуха, урожайность и беловая продуктивность бобовых культур в Алании. - Владикавказ: Ирстон, 1997 г. – 210 с.
3. Кшникаткина А.Н., Гришин Г.Е., Терехин И.С. Эффективность многолетних бобово-злаковых травосмесей с включением клевера паннонского в кормопроизводстве Среднего Поволжья // Нива Поволжья, 3(32), с. 30-36.
4. Козырев А.Х. Симбиотическая активность и продуктивность люцерны в зависимости... Автореферат дисс. канд. наук. – Владикавказ, 1999 г. – 20 с.
CONSTRAINS AND POTENTIALS OF A PADDY FIELD IRRIGATION SYSTEM FOR OTHER FIELD CROPS CULTIVATION UNDER MINOR IRRIGATION SYSTEM

Gajanayake Mudalige Pradeep Kumara
Institute of Agriculture, University of Peradeniya, Sri Lanka pradeepgajanayake@gmail.com

Key words: crop diversification, drainage system, irrigation water, hydraulic head, soil texture.

Minor irrigation systems are very unique to Sri Lankan agriculture for centuries for its role in food security and livelihood. According to current estimate 37% of the country’s agricultural lands belong to minor tanks and crop diversification in the minor irrigation system is one of the key factor for sustainable agricultural production and rural livelihood development. The objective of this study is to evaluate constrains and potentials of the system layout in a minor irrigation system for crop diversification during two major seasons and in-between seasons. Study was done in Bayawa minor irrigation system, Kurunagala in Sri Lanka on 2014 and 2015 period. Data were collected and analyzed to evaluate, system components and sustainability, canal uniformity, accessibility, land and farmer plots distribution and soil characteristics in the command area. The tank capacity and amount of irrigation water is good in this area for other field crops (OFC) cultivation. In system layout, irrigation canals uniformity is varies along the distance from head end to tail end and it requires a large amount of irrigation water for cultivation because of depth of water in the canals should be higher enough to supply irrigation water under gravity due to elevation difference between field and canals. Lack of systematic drainage canals is one of the major constraints for draining excess water for OFC cultivation particularly in high rainy seasons. The soil at tail and middle part of the command area is mainly clay, which makes it difficult for drainage compared to a portion of head section where sand is dominant. Therefore, the recommendation for OFC has to be restricted in the head end. Land size and their orientation restrict access to field irrigation and drainage. Canal system layout has to be considered in promotion of OFC for sustainable farming in minor irrigation systems.

References:
INHERITANCE OF AGRONOMIC CHARACTERS F1 HYBRIDS OF SPRING BARLEY IN THE CONDITIONS OF THE AMUR REGION
НАСЛЕДОВАНИЕ ХОЗЯЙСТВЕННО-ЦЕННЫХ ПРИЗНАКОВ ГИБРИДАМИ F1 ЯРОВОГО ЯЧМЕНЯ В УСЛОВИЯХ АМУРСКОЙ ОБЛАСТИ

Кузнецов А.С., Куркова И.В.
Дальневосточный ГАУ, Благовещенск, Россия
aleksandra-999@mail.ru

Ключевые слова: селекция, ячмень, продуктивность, Амурская область.

Целью наших исследований является создание гибридных комбинаций ярового ячменя, обладающих повышенными хозяйственно-ценными признаками. Для скрещивания были подобраны родительские формы по эколого-географическому принципу. В 2013 г. было получено гибридное зерно. Растения первого поколения в 2014 г. были подвергнуты биометрическому анализу. На его основании был проведен расчет степени доминирования и проявления гетерозиса в F1, который проводили по шести определяющим продуктивность признакам: высота растения, продуктивная кустистость, длина главного колоса, число колосков в главном колосе, количество зерен в главном колосе, масса зерна главного колоса. В результате было выявлено, что наследование хозяйственно-ценных признаков гибридами ярового ячменя F1 колеблется от депрессии до сверхдоминирования. При этом наиболее часто по типу сверхдоминирования наследовалась длина главного колоса, наибольшая величина Гист = 11,3% у гибрида Halikko x Klages. Одновременно по 5-ти признакам превосходил родительские формы один гибрид - Alexis x Симон, что говорит о его ценности и необходимости тщательного дальнейшего изучения. У двух гибридных комбинаций наследование хозяйственно-ценных признаков прошло по типу депрессии: Alexis x Таловский 9 и Симон x Южный, что характеризует их на данном этапе как малоперспективные.

Библиография:
3. Федин М.А. Проблема гетерозиса пшеницы и предпосылки его использования./ Автореф. докт. дис. – Л., 1974. – 24 с.
BIOLOGICAL BASES FOR PREVENTING OF SOIL DEGRADATION

Lobkov V.T., Plygun S.A.
Orel State Agrarian University, Orel City, Russia
v.lobkov2014@yandex.ru

Key words: agriculture, biologization, agro-ecological resources, soil fertility, crop rotation.

Agriculture biologization is one of the most defining trends in world agriculture. But along with the achievements, intensive farming has created many serious problems. Nitrate contamination, pesticide residues, taste deterioration of crop production is mainly due to the extensive use of intensification factors. In the search for solutions to these problems in science formed a new direction - agriculture biologization, suggesting solution of these problems through increased biological processes of reproduction of agro-ecological resources.

The notion of agriculture biologization mostly characterizes the system of farm management than system of arable farming. Various economic conditions create unequal opportunities for production on the principles of biologization. The ratio of area of natural grassland and arable land is of great importance. The larger the share occupied by natural hayfields and pastures, the farm has a great opportunity for implementing the reproduction of soil fertility through biological farming.

Biologizing agriculture also involves extensive use of non-market part of crop, livestock by-products, green manure, etc. Need for introducing organic matter into the soil causes several tillage peculiarities. One of the ways to reduce energy and resource costs is minimizing tillage. Experience shows that the minimization does not lead to increasing farming culture. Particular importance there has the new combined aggregates. It is known, for example, that when applying subsurface cultivator tillage, fuel costs may be reduced by 5-6 times and performance of technological operations is significantly improved. The use of straw leads primarily to a decreasing erosion because crop residues on the soil surface is one of the most powerful means of combating water erosion. Besides soil erosion control, the use of straw increases the content of organic matter in the soil, promotes biological fixation of nitrogen.

One of the most important and available reserves for increasing crop yields and soil fertility are green manures. They are cheap, renewable, can occupy a single field and sowed as intercropping. Using legumes as a green manure can not only restock the organic matter in the soil, but also to use nitrogen, accumulated by symbiotic nitrogen fixers in an amount of 80-100 kg/ha.

Other way to improve plant productivity and soil fertility improvement in the conditions of biological farming is the use of bacterial fertilizers. Among them is quite high efficiency demonstrated in preparations of nodule bacteria peat (rizotorfina) and dry nitragin (rizobin). However, as practice shows, positive results from the use of bacterial fertilizers can be expected only in well-cultivated soils, with high levels of agricultural technology and the availability of high-quality, active strains of microorganisms in these fertilizers.

Crop rotation is the basis for the regulation and stabilization of the number and spread of pests. Cultures with same pests and diseases should be returned to its original place no earlier than 3-4 years (grains, beans, cabbage) to 5-6 years (sugar beet,
sunflower). Between such cultures should be observed spatial isolation from 300-400 m to 1-3 km.

Timely tillage, proper preparation and application of organic fertilizers, the use of quality seeds, sowing at the optimum time, all other activities aimed at improving the growth and development of plants are essential to protect plants.

Russia has accumulated considerable practical experience in the application of biological methods in agriculture. Thus, on the farms of many regions in the complex of measures against pests and weeds the mechanical and biological processes are in focus, and the latter is restore soil fertility. At this stage it is necessary to create conditions for the resolution of questions that do not require significant changes in the process and the organization of production.

This primarily concerns the introduction of scientifically based crop rotations, aimed at creating the best possible conditions for biological farming. In the current conditions, crop rotations are irreplaceable biological factors of improvement phytosanitary situation in phytocenoses. On the basis of increasing crop rotation as the main biological factor, the entire concept of biological agriculture should build on it. Proceeding from the above, we can conclude that the transfer of agriculture to the principles of biologization may be one of the directions leading-out the agricultural sector to a new level of development and soil protection on biological bases.

References:
ВЛИЯНИЕ ПРЕДШЕСТВЕННИКОВ ОЗИМОЙ ПШЕНИЦЫ НА СВОЙСТВА И БИОЛОГИЧЕСКУЮ АКТИВНОСТЬ ПОЧВЫ

INFLUENCE OF PREDECESSORS OF WINTER WHEAT ON THE PROPERTIES AND BIOLOGICAL ACTIVITY OF SOIL

Мельник А.Ф.
Орловский государственный аграрный университет, Орел, Россия
melnik.anat202@yandex.ru

Ключевые слова: озимая пшеница, предшественник, почва, земледелие.

Одним из важных условий эффективного функционирования экономики России является устойчивое развитие сельского хозяйства. Если экономический рост в этой отрасли сопровождается чрезмерными экологическими издержками, то под сомнение ставится продовольственная безопасность страны.

Решение проблемы сохранения и повышения плодородия почв, получения высококачественных урожаев биологически полноценного зерна озимой пшеницы связано с переходом к эколого-ландшафтным адаптированным системам земледелия, базирующихся на основе широкой биологизации, направленных на повышение роли природно-биологических факторов.

В связи с возрастающей интенсификацией земледелия усиливаются экологическая и биологическая оценки роли органического вещества почвы, и влияния конкретных агротехнических приёмов на биологическую активность почвы.

Система севооборотов должна обеспечивать бездефицитный баланс гумуса, препятствовать ухудшению фитосанитарного состояния посевов и почвоутомлению. Севооборот является фактором более полного использования экологических ресурсов для повышения продуктивности всех культур, в т.ч. озимой пшеницы: света, тепла, влаги, естественного плодородия почв, находящихся на территории агроландшафта.

Озимая пшеница для формирования высокопродуктивных посевов, прежде всего, предъявляет высокие требования к предшественникам. От них зависит количество накопленной влаги, питательных веществ, структура почвы ко времени её сева, что в дальнейшем определяет дружность появления, развитие всходов, фитосанитарное состояние посевов, уровень эффективного плодородия почвы, что оказывает существенное влияние на урожай и качество продукции.

Согласно современным представлениям считается, что для озимой пшеницы лучшим предшественником, способствующим формированию оптимального урожая с высокими показателями качества зерна, является черный пар. Это объясняется тем, что после парования в почве накапливается больше азота, чем после непаровых предшественников.

Однако черный пар, с экологической точки зрения не может считаться рациональным предшественником, так как приводит к большим потерям плодородия почв в результате смысла значительной части пахотного слоя, стока воды и растворенных в ней биогенных элементов. Кроме того по мнению ряда исследователей, он экономически невыгодный [1,2].

Внедрение и освоение севооборотов с многолетними злаково-бобовыми травами и однолетними злаково-бобовыми смесями это важный стратегический
путь внедрения биологизированной системы земледелия, от которого во многом зависит эффективность других ее элементов [3,4].

Поэтому правильный выбор предшественника, являющегося основой высокопродуктивного функционирования озимой пшеницы, остается весьма актуальной задачей.

Рассмотрению методологических подходов и решению выше перечисленных задач и проблем, исходя из принципов системности, альтернативности, энергосбережения, нормативности, соответствие современного земледелия новым производственным отношениям в оптимальной системе природопользования, посвящена эта работа.

Исследования по обоснованию адаптивных агroteхнологий озимой пшеницы, обеспечивающих на серых лесных почвах Лесостепной части ЦЧЗ РФ стабильно прогнозируемое получение зерна высокого качества осуществлялись в полевом стационарном севообороте учхоза «Лавровский» Орловского ГАУ в 1998-2005 г. г. Содержание гумуса (по Тюрину) в пахотном слое - 4,48%, P2O5 - 14,6 и K2O - 14,8 мг/100 г, рНсол - 5,8.

Озимую пшеницу сортов Памяти Федина и Московская 39 высевали в оптимальные агротехнические сроки. Технология возделывания озимой пшеницы - общепринятая для условий ЦЧЗ РФ. Наблюдения, анализы и учеты выполнены по общепринятым методикам [5,6].

Различное целевое использование викоовсяной смеси и клеверотимофеевской травосмеси в качестве предшественников озимой пшеницы оказали достоверное влияние на агрофизические свойства почвы. Установлено, что запашка викоовсяной смеси на сидерат обеспечила повышение влажности почвы в слое 0-20 см на 1,5-3% в сравнении с использованием ее на зеленую массу, зерно-сенаж и зерно. Это обеспечило повышение полевой всхожести семян озимой пшеницы, увеличение продуктивной кустистости на 8-12%, повышение сохранности на 12-17% при перезимовке.

В среднем за годы исследований в варианте с использованием викоовсяной смеси на сидерат количество дождевых червей возросло на 8-44% в сравнении с другими вариантами использования викоовсяной смеси. Это связано с тем, что молодое зеленое растение имеет много влаги, в почве быстро гумифицируется и формирует лучшие условия для жизни дождевых червей.

Значительное влияние на целлюлозоразлагающую активность почвы оказали варианты использования викоовсяной смеси в качестве предшественника озимой пшеницы. Так викоовсяная смесь на сидерат обеспечила увеличение интенсивности разложения льняной ткани (ИРЛТ) на 2-6,7% в сравнении с вариантами ее уборки на зеленую массу, зерно и зерно-сенаж.

Это связано с поступлением в почву органической биомассы, которая обладает высокой влажностью и повышенным содержанием азота, является источником питания почвенной микрофлоры. Зеленая биомасса, поступающая в почву, способствовала повышению активности микроорганизмов.

Корреляционный анализ величин коэффициентов корреляции с интенсивностью разложения льняной ткани, и выраженные графически зависимости урожайности и клейковины, от целевого использования викоовсяной смеси позволил установить, что сочетание интенсивных и биологических факторов обеспечивает получение высококачественного урожая озимой пшеницы в Лесостепной части ЦЧЗ РФ.
В темно-серых лесных почвах в пределах почвенного профиля основная часть органического вещества представлена гумусом. Гумус, как известно, страж плодородия. Если он не восстанавливается, то плодородие почвы падает. Поэтому одна из главных задач в земледелии - бесперебойно обеспечивать почвенные микроорганизмы свежим органическим веществом путем возделывания растений на поле в течение всего теплого времени, дополняя в севообороте основные полевые культуры бобовыми травами, промежуточными и подсевными культурами на корм и зеленое удобрение [7].

Проведенные нами исследования показали, что варианты с использованием викоовсяной смеси целевого назначения по-разному оказали влияние на содержание гумуса в почве. Так использование в качестве предшественника озимой пшеницы викоовсяной смеси на зеленую массу не приводило к снижению гумуса в почве. В то же время в вариантах с использованием викоовсяной смеси на зерно-сенаж и зерно установлена тенденция снижения содержания гумуса в почве на 0,02 - 0,06%. Это, по-видимому, связано с поступлением недостаточного количества органического вещества в виде пожниво-корневых остатков, необходимых для восполнения запасов гумуса.

В то же время запашка 42 т/га зеленой массы викоовсяной смеси на сидерат обеспечила бездефицитный баланс гумуса и стабилизацию его содержания в почве. В этом варианте запашка биомассы смеси на зеленую массу не приводила к снижению гумуса в почве. В то же время варианты с использованием викоовсяной смеси на зерно-сенаж и зерно установлена тенденция снижения содержания гумуса в почве на 0,02 - 0,06%. Это, по-видимому, связано с поступлением недостаточного количества органического вещества в виде пожниво-корневых остатков, необходимых для восполнения запасов гумуса.

В наших исследованиях (2001-2005 г. г.) различное целевое использование клеверотимофеечной травосмеси II г. п. в качестве предшественника неоднозначно оказала влияние на агрофизические свойства почвы и продуктивность озимой пшеницы. Клеверотимофеечная травосместь разного целевого использования оказала влияние на влажность почвы, полевую всхожесть семян, сохранность к уборке, фитосанитарную ситуацию в посевах озимой пшеницы и содержание гумуса в почве. Установлено, что лучшие вышеперечисленные показатели обеспечил вариант с запашкой отавы после 1 укоса клеверотимофеечной травосмеси (2 декада июля).

Запашка 38 т/га ее сидеральной биомассы увеличила содержание гумуса на 0,22%. Однако в связи с недостаточно полным разложением запаханной биомассы установлена изрежженность посевов озимой пшеницы и, как следствие, увеличение засоренностью тимофеевкой луговой, а также многолетними сорняками, в
отличие от варианта с поукосным использованием клеверотимофеечной травосмеси. При этом запашка ее отавы после 1 укоса обеспечила бездефицитный баланс гумуса в почве (+0,1%).

В то же время в вариантах с использованием клеверотимофеечной травосмеси после одного и 2-х укосов установлена тенденция снижения его запасов.

Таким образом, можно сделать вывод, что использование биомассы викоовсяной смеси и клеверотимофеечной травосмеси на зеленое удобрение в качестве предшественников озимой пшеницы, обеспечили повышение емкости круговорота веществ в агроэкосистемах, усилили биологическую активность почвы и выполняет эколого-стабилизирующую роль в растениеводстве, что согласуется с мнением Парахина (2011).

Библиография:
9. Парахин, Н.В. Влияние приемов агротехники на свойства почвы, продуктивность и качество зерна озимой пшеницы / Парахин Н.В., Мельник А.Ф., А.И. Золотухин //Земледелие 2011.- № 5.- С. 27-28
EFFECTS OF GAS FLARING ON FOOD PRODUCTION IN NIGER DELTA REGIONS OF NIGERIA

Olugbire O.O.
Forestry Research Institute of Nigeria, Jericho, Ibadan, Nigeria
Okon U.H.
Department of Agricultural Economics, University of Ibadan, Nigeria
Aremu F.J.
Department of Agricultural Economics, Obafemi Awolowo University, Ile Ife, Nigeria
fakunle2011@gmail.com

Key words: food production, Nigeria, climate, policies.

This study examined gas flaring, its effect on the environment and food production in the Niger Delta region of Nigeria. Three states (Edo, Rivers and Cross rivers) were purposively selected and secondary data between 1970-2010 was collected from Department of Petroleum Resources (DPR), Nigerian Meteorological Agency (NIMET), and Nigerian Bureau of Statistics (NBS). Data was analyzed using graphs, tables and an OLS regression model. The trend analysis and the correlation coefficients revealed different natures (positive and inverse) of correlations between the yield of selected crops (cassava, maize and yam) and selected climatic variables. The unit root test carried out revealed that the time series is non-stationary for cassava, maize and yam in the three states. The analysis of production function revealed that gas flaring has positive effect on cassava production while its effect was found to be negative on maize and yam production. Gas flaring has a direct effect on climatic variables but an indirect effect on yields; therefore the study recommends that gas flaring policies and laws should be fully enacted.

References:
ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ БИОПРЕПАРАТОВ ЭКОГЕЛЬ И ЭКСТРАСОЛ НА ПОСЕВАХ ОЗИМОЙ ПШЕНИЦЫ
PROSPECTS FOR USING OF BIOLOGICAL PRODUCTS EKOGEL AND EKSTRASOL ON WINTER WHEAT

Резвякова С.В.
Орловский государственный аграрный университет, Орел, Россия
lana8545@yandex.ru

Ключевые слова: биопрепарат, озимая пшеница, урожайность, регулятор роста.

Цель настоящих исследований – определить эффективность биопрепаратов Экстрасол и Экогель на посевах озимой пшеницы на черноземе оподзоленном легкосуглинистом. Препарат комплексного действия Экстрасол представляет собой чистую бактериальную культуру Bacillus Subtilis штамм Ч-13 в форме жидкой суспензии с содержанием биоагента не менее 100 млн. бактерий в 1 г препарата. Экстрасол обеспечивает защиту растений от широкого спектра патогенной микрофлоры и на 30-50% потребность растений в питательных элементах благодаря азотфиксирующим и фосфатмобилизующим свойствам. Для изготовления препарата Экстрасол используют бактерии, изолированные из ризосферы или поверхности корней, включая гистосферу культурных растений, отличающихся в агроценозе повышенной продуктивностью, а также размерами и отсутствием поражения фитопатогенной микрофлорой (http://bisolbi-sk.ru/product/touse/grain/).

Основным действующим веществом препарата Экогель является лактат хитозана. Это композиция из линейных поламиносахаридов, растворенная в альфа-оксипропионовой кислоте. Препарат воздействует на растения в соответствии с теорией сигнальных систем запуска ростоактивирующих и защитных механизмов растений, а также теорией индуцированной иммунной устойчивости. (http://cluboz.kiev.ua/ekogel/). Экогель является также новым высокоэффективным средством защиты растений от вирусных, грибковых и бактериальных заболеваний. Он позволяет сдерживать развитие фитофагов ниже порога вредоносности.

Для реализации поставленной цели в Болховском районе Орловской области в 2013-2014 гг. был заложен опыт в севообороте со следующим чередованием культур:
1. Вико-овсяная смесь на сено;
2. Озимая пшеница;
3. Кукуруза на зерно;
4. Яровой ячмень.

Почва опытного участка представлена черноземом оподзоленным, по механическому составу - легкосуглинистая. Содержание гумуса в пахотном слое...
составляет 5,0-5,7 %, подвижного фосфора (по Чирикову) – 18,8, обменного калия (по Масловой) – 17,2 мг/100 г почвы. Реакция почвенной среды слабокислая (pH 5,5). Сумма обменных оснований – 85,3%.

Варианты в полевом опыте располагались систематически в один ярус. Повторность в опытах 3-кратная.

Делянки имели форму вытянутого прямоугольника с учетной площадью 100 м2.

Схема полевого опыта и содержание вариантов:
1. Контроль, без обработок;
2. Экогель, обработка семян – 1 л/т + обработка посевов в фазе кущения (весна) 3л/га + в фазу начала колошения – 3л/га.
3. Экстрасол, обработка семян – 1 л/т + обработка посевов в фазе кущения (весна) 2л/га + в фазе выход в трубку – 2л/га.

Полевые работы на опытном участке проводились в лучшие агротехнические сроки. Посев - 5 сентября. Фон минерального питания – N30P30K30 (Внесен с осени около 2 ц нитрофоски). Весной провели двукратную подкормку аммиачной селитрой по 125 кг/га. Обработку семян препаратами проводили за 2 дня до посева ранцевым опрыскивателем, затем семена подсушивали в затененном помещении. Обработку посевов озимой пшеницы проводили ранцевым опрыскивателем в соответствии со схемой опыта.

Сорт озимой пшеницы Московская-56. Для посева использовались семена, отвечающие требованиям 1-го класса посевного стандарта с поштучной нормой посева – 5 млн. всхожих зерен на гектар.

Способ посева – рядовой (сейлкой СН-16) с последующим прикатыванием кольчато-шпоровыми катками. Глубина заделки семян – 4-5 см.

Погодные условия 2013-2014 сельскохозяйственного года сложились удовлетворительно для роста и развития озимой пшеницы. Количество осадков, выпавшее в предпосевной период (август-сентябрь 2013 г.) составило 91,6 мм или 85 % нормы. Это способствовало тому, что запасы продуктивной влаги в пахотном слое почвы перед посевом были близки к оптимальным (25-27 мм). Температурный режим предпосевного периода был близким к средним многолетним значениям - 15,9оС, при норме 15,2оС.

Прекращение осенней вегетации озимой пшеницы наступило во второй декаде ноября с переходом среднесуточной температуры воздуха через 5оC в сторону дальнейшего понижения, озимые культуры перешли в стадию покоя в удовлетворительном состоянии. В этом году сумма среднесуточных температур периода от посева озимой пшеницы до прекращения осенней вегетации составила 680оC при оптимуме 550-580оC.

Результаты проведенных исследований свидетельствуют о высокой эффективности препаратов Экстрасол и Экогель на посевах озимой пшеницы в условиях чернозема оподзоленного легкосуглинистого. На контрольном варианте всходы озимой пшеницы появились на 9 день после посева. На вариантах с обработкой семян биопрепаратами всходы появились на 2-3 дня раньше, фазы кущения, колошения и цветения также наступили раньше на 2-4 дня по сравнению с контролем. Причем, более активное развитие растений отмечено при обработке Экстрасолом. Начиная с фазы молочно-восковой спелости, разница по влиянию изучаемых биопрепаратов на сроки наступления фенологических фаз нивелируется. Однако по сравнению с вариантом без обработки полная спелость
наступила на 3 дня раньше. На вариантах, где проводилась обработка семян биопрепаратами, в период возобновления весенней вегетации (2-я декада апреля), растения озимой пшеницы были более развитыми, имели более мощную вегетативную массу и корневую систему.

Биопрепараты оказали положительное влияние на зимостойкость растений. Период закаливания озимой пшеницы проходил при повышенных температурных условиях, поэтому из двух фаз закали растения прошли только первую. Вследствие этого содержание сахара в узле кущения во второй декаде декабря составляло 10-12 % при оптимуме не менее 20 %. Начиная со второй декады декабря, среднесуточная температура воздуха в ночное время опускалась до 25,6оС. При этом температура почвы на глубине узла кущения опускалась до 4-5оС. Перезимовка озимой пшеницы проходила в благоприятных условиях.

На контрольном варианте количество живых растений, вышедших из перезимовки, составило 84,3 %. Обработка семян и вегетирующих растений Экогелем и Экстрасолом способствовала повышению устойчивости растений к сумме стресс-факторов зимнего периода. Сохранность растений увеличилась на 7,3 и 10,7 % соответственно, что убедительно доказывает эффективность использования иммуномодуляторов.

Обработка растений препаратами Экогель и Экстрасол способствовала лучшему росту и развитию растений озимой пшеницы. Так, отмечено увеличение продуктивной кустистости (в расчете на одно растение) до 1,42 шт. при продуктивной кустистости на контрольном варианте равной 1,41 шт. Из-за хорошей сохранности растений после зимовки и в результате высокой густоты стояния продуктивная кустистость для озимой пшеницы не значительная.

Таблица 1 - Влияние стимуляторов роста на урожайность озимой пшеницы

<table>
<thead>
<tr>
<th>Вариант</th>
<th>урожайность, ц/га</th>
<th>± к контролю, ц/га</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль, без обработок</td>
<td>41,86</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Экогель, обработка семян – 1 л/т + обработка посевов в фазе кущения 3л/га + в фазу начала колошения – 3л/га</td>
<td>48,05</td>
<td>+6,19</td>
<td>+14,8</td>
</tr>
<tr>
<td>Экстрасол, обработка семян – 1 л/т + обработка посевов в фазе кущения 2л/га + в фазу выход в трубку – 2л/га</td>
<td>50,09</td>
<td>+8,23</td>
<td>+19,7</td>
</tr>
<tr>
<td>НСР 05</td>
<td>2,12</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Озерненность колоса составила 22,2-22,3 зерен, на контрольном варианте – 22,1 зерна; масса 1000 зерен - 33,3 г, на контроле – 33,2 г. Натур зерна по сравнению с контролем увеличилась при обработке Экогелем на 13 г, Экстрасолом – на 16 г и составила соответственно 786 и 789 г.

Более высокие показатели структуры урожая на вариантах с обработкой семян биопрепаратами обеспечили повышение урожайности озимой пшеницы на 6,19-8,23 ц/га или 14,8 и 19,7 %.

Библиография:

УРОЖАЙНОСТЬ И КАЧЕСТВО ЗЕРНА СОИ ПРИ РАЗЛИЧНОЙ ИНТЕНСИВНОСТИ ОБРАБОТКИ ПОЧВЫ

YIELD AND QUALITY OF SOYBEAN AT DIFFERENT TILLAGE INTENSITY

Сорокина М.В., Лобков В.Т., Абакумов Н.И., Бобкова Ю.А.
Орловский государственный аграрный университет, Орел, Россия
bobkovaj75@mail.ru

Ключевые слова: соя, качество зерна, обработка почвы, урожайность.

Исследованиями ряда ученых было выявлено положительное влияние агротехнических мероприятий на формирование продуктивности сельскохозяйственных культур, в том числе и сои [1,2,3,4]. Однако, вопрос влияния обработки почвы на качество зерна сои недостаточно изучен и поэтому дальнейшая разработка экономически обоснованных, и экологически безопасных агроприемов не теряет актуальность.

Исследования по влиянию различных способов обработки почвы на урожайность и показатели качества зерна сои проводились в 2014 году на опытном поле кафедры земледелия ФГБОУ ВО Орловский ГАУ в условиях полевого стационарного опыта.

В качестве объекта исследований использовался рекомендованный для возделывания в Орловской области сорт сои Ланцетная. В опыте изучались следующие варианты обработки почвы: нулевая (прямой посев), плоскорез (14-16 см), комбинированная KOS (14-16 см), вспашка отечественным плугом ПЛН 5-35 (20-22 см), вспашка оборотным плугом LEMKEN (20-22 см). Учетная площадь делянок - 102 м², повторность опыта трехкратная, размещение делянок систематическое. Почва опытного поля представляет собой типичную для области тёмно-серую лесную среднесуглинистую глееватую почву. Период вегетации сои можно охарактеризовать как благоприятный для возделывания данной культуры.

В результате проведенных исследований установлено, что урожайность сои в значительной мере изменялась по вариантам опыта (Таблица 1).

Таблица 1 – Урожайность и качество зерна сои по вариантам опыта

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вариант опыта</th>
<th>Урожайность, ц/га</th>
<th>Содержание, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>белка</td>
</tr>
<tr>
<td>1</td>
<td>Нулевая обработка</td>
<td>9,74</td>
<td>33,2</td>
</tr>
<tr>
<td>2</td>
<td>Плоскорезная обработка КПШ 5</td>
<td>13,10</td>
<td>31,6</td>
</tr>
<tr>
<td>3</td>
<td>Комбинированная обработка агрегатом КОС 3,7</td>
<td>13,67</td>
<td>31,2</td>
</tr>
<tr>
<td>4</td>
<td>Вспашка ПЛН 5-35</td>
<td>16,43</td>
<td>31,9</td>
</tr>
<tr>
<td>5</td>
<td>Вспашка оборотным плугом фирмы LEMKEN</td>
<td>12,73</td>
<td>32,9</td>
</tr>
<tr>
<td></td>
<td>НСР05</td>
<td>2,07</td>
<td>2,05</td>
</tr>
</tbody>
</table>

Науке известно, что на величину урожая влияет засоренность посевов, а также, такой технологический признак, как высота крепления первого боба (применительно к сои), определяющий высоту среза комбайна при уборке культуры. На варианте с нулевой обработкой данный показатель был минимальный, и составлял 13,9 см, что значительно повлияло на полученный урожай, а на варианте со вспашкой отечественным плугом максимальный - 16,1
см. По остальным вариантам опыт данный показатель находился в пределах от 14,8 до 15,1 см.

Наименьшая засоренность посевов была отмечена на вариантах с применением вспашки (ПЛН 5-35 – 40 шт/м², и оборотный плуг - 42 шт/м² – на момент уборки), а наибольшая на вариантах с минимальной и нулевой обработкой почвы (нулевая обработка – 53 шт/м², плоскорезная – 50 шт/м², комбинированная 49 шт./м²).

По традиционной (вспашка плугом отечественного производства) обработке почвы растения сои в условиях опыта сформировали большую урожайность по сравнению с другими вариантами. Технология прямого сева (нулевая обработка) способствовала формированию минимальной урожайности.

На сегодняшний день стоит задача не только повысить величину урожая сои, но и улучшить его качество.

Различные способы обработки почвы оказали влияние на содержание белка в зерне сои, практически не изменяя содержание масла в зерне. Максимальное содержание белка в зерне сои наблюдалось при нулевой обработке почвы, а минимальное – при комбинированной обработке почвы. Содержание масла в зерне сои по вариантам опыта варьировало в пределах 25,9 – 26,7%.

Вышеизложенное свидетельствует о том, что традиционный способ обработки почвы является наиболее предпочтительным для возделывания сои.

Сельское хозяйство, как и всякое другое производство, направлено в конечном итоге на получение прибыли. Исходя из этого, все предлагаемые изменения в технологиях получения продукции растениеводства должны быть экономически обоснованы.

Экономические показатели производства сои по вариантам опыта представлены в таблице 2.

Небольшие затраты на производство продукции отмечены на варианте с традиционной обработкой почвы, однако условно чистый доход на этом варианте минимальный, а рентабельность составила 60,01%.

<table>
<thead>
<tr>
<th>Варианты обработки почвы</th>
<th>Экономические показатели</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Прямые затраты на1 га, руб.</td>
<td>Стоимость валовой продукции, руб. с 1 га</td>
</tr>
<tr>
<td>Нулевая обработка</td>
<td>14310</td>
<td>15584</td>
</tr>
<tr>
<td>Плоскорезная обработка КПШ 5</td>
<td>16260</td>
<td>20960</td>
</tr>
<tr>
<td>Комбинированная обработка агрегатом KOS 3,7</td>
<td>16189</td>
<td>21872</td>
</tr>
<tr>
<td>Вспашка ПЛН 5-35</td>
<td>16518</td>
<td>26288</td>
</tr>
<tr>
<td>Вспашка оборотным плугом фирмы LEMKEN</td>
<td>15994</td>
<td>20368</td>
</tr>
</tbody>
</table>

Наименьшие затраты на производство продукции приходятся на вариант с использованием прямого сева. Однако доход и рентабельность на этом варианте были минимальными, это связано с очень низкой урожайностью (9,74 ц/га) зерна сои, на этом варианте.
Из приведенных данных следует, что для получения максимального экономического эффекта при возделывании сои в Центральной лесостепи, можно рекомендовать в качестве основного приема обработки почвы – вспашку. При невозможности проведения зяблевой вспашки под сою, необходимо проводить комбинированную или плоскорезную обработку. Это позволит получить рентабельность 30-35%.

Библиография:
2. Лобков, В.Т. Оценка эффективности возделывания сельскохозяйственных культур в зависимости от способов основной обработки почвы в центрально-черноземном регионе / В.Т. Лобков, Н.К. Кружков, А.А. Забродкин, А.С. Новикова // Вестник Орел ГАУ. – 2013. - №1. - С. 8-11.
THE Effectiveness of bio-preparations and micronutrients in soil biological activity

Stepanova L.P., Korenchkova E.A., Stepanova E.I.
Oryol State Agricultural University, Oryol, Russia
dissovet-orelsau@yandex.ru

Key words: Azotovit, Fosfotovit, Akvamiks, microbial complex, rhizosphere, bio-preparations, biologization, plant-microbial interaction.

Biologization of agriculture is based on the wide use of principles of functioning of natural ecosystems with the development of each of its elements. The problem of soil protection acquires more and more importance in connection with the worsening of the environment, the increase in the areas of land polluted with xenobiotics, in particular heavy metals. In monitoring and agroecological investigations of technogenically polluted soils it is necessary not only to identify the presence and concentration of contaminants, but also to determine their impact on the biological system of the soil. It is well known that microorganisms are sensitive to changes in soil conditions or the presence of pollutants [2,5].

The study of microflora and monitoring in this crucial part of the soil cover is an urgent problem. The study of the composition, properties and quantitative relations of different physiological and systematic groups of microorganisms can give information about the agronomic properties of the soil. Significant influence on the soil microbiota are exerted both by the use of chemicals, and by the use of growth-stimulating preparations and bacterial fertilizers [3,4].

The goal of the research - to study the microbial complex of dark forest soil when working with a bacterial preparation on the background of mineral fertilizers and the microbial growth of grass on the background of mineral fertilizers in the rhizosphere of winter and spring wheat.

Azotovit - bacterial biofertilizer of complex action. The suspension of free-living nitrogen-fixing bacteria. When spraying the seed with the solution of Azotovit, the bacteria begin to actively multiply in the soil, especially in the root system of the plant and in the soil in the immediate vicinity of the root system. In the process of development, the bacteria in the number of increase several times more and begin to actively fix atmospheric nitrogen and use it in the process of their metabolic processes. Bacteria constantly multiply and die, nitrogen, released during their decay in the form of ammonia, nitrate and amino acids enter the soil, from which it is easily absorbed by developing plants. Over a vegetation period, the Azotovit bacteria can accumulate from 50 to 80 kilograms of nitrogen per hectare.
Аквамикс – водорастворимый комплекс микроэлементов в хелатной форме. Применяется для предотвращения и компенсации недостатка микроэлементов. Используется при прорщревании семян зерновых, дражировании семян овощных, корнеплодных культур, некорневых подкормок и внесении с поливом в открытом и защищенном грунте. Применение Аквамикса способствует: более полному усвоению элементов питания, увеличению устойчивости растений к неблагоприятным факторам внешней среды, ускорению цветения и завязывания плодов, предупреждению заболеваний хлорозами, снижению содержания нитратов в плодах и овощах.

Фосфатовит- микробное биоудобрение комплексного действия. Суспензия не симбиотических, свободно движущих, силикатных бактерий. Бактерии Фосфатовита, будучи нанесенными на семена или внесенные в почву, начинают активно размножаться, особенно интенсивно заселяя поверхность корней растения и прикорневую зону. Бактерии активно расщепляют нерастворимую минеральную часть почвы (мусковиты, апатиты, слюды, фосфориты и т.д.) и трифосфаты, таким образом, переводя фосфор и калий в форму, легко усваиваемую растениями непосредственно вблизи от корневой системы, улучшая минеральный режим питания.

Почвы опытного участка представлены темно-серыми лесными среднесуглинистыми. Содержание гумуса в пахотном горизонте 5,2 - 5,5%. Сумма поглощенных оснований 28,2 – 30,9 мг- экв/100 г почвы, степень насыщенности основаниями 83-91%, pH солевой вытяжки 5,8 - 6,0, мощность гумусового слоя 50 - 55 см. Содержание Р2О5 10,5 мг/100, К2О - 13,2.

Отобранные образцы почв анализировали по общепринятым методикам: микробиологические исследования выполнялись в влажных и сухих образцах почвы. Перед посевом для десорбции микроорганизмов с почвенных частиц почву растирали по Звягинцеву Д.Г., затем водно-почвенные суспензии встряхивали на качалке в течение 15 минут и готовили серию последовательных разведений [1]. В почве определяли общую численность колониеобразующих единиц (КОЕ) основных физиологических групп микроорганизмов, которые учитывали классическими методами посева на твердые питательные среды:– МПА (мясо-пептонный агар) – использующие органические формы азота (аммонификаторы);– КАА (крахмало-аммиачный агар) – использующие минеральные формы азота, в том числе актиномицеты;– среда Чапека с добавлением молочной кислоты – микроскопические грибы;– среда Гетчинсона с фильтровальной бумагой – целлюлозоразлагающие микроорганизмы, в том числе бактерии, грибы, актиномицеты. Анализ выполняли в 3-кратных повторностях.

Исследованиями показано, что в онтогенезе изменяется численность основных групп микроорганизмов, участвующих в преобразовании органических и минеральных соединений. Так, численность азотфиксирующих, фосфатмобилизирующих, гетеротрофных микроорганизмов и бактерий, использующих минеральные формы азота, значительно выше в ризосфере яровой пшеницы при обработке семян микроудобрением Аквамикс, в сравнении с бактериальными препаратами азотовит и фосфатовит, и почти в 2 раза превышает численность микроорганизмов в ризосфере и яровой, и озимой пшеницы при внесении только минеральных удобрений.

При обработке семян микроудобрением общая численность микроорганизмов возрастает до 61,8 х 10^6 КОЕ/г в посевах озимой пшеницы, и до
65, 2 х 10⁶ КОЕ/г в ризосфере яровой пшеницы. Следует отметить, что численность микроорганизмов в пахотном слое контрольного фонового варианта, как в посевах озимой пшеницы, так и яровой пшеницы была примерно одинаковой 27,3 – 27,9 х 10⁶ КОЕ/г, а коэффициент минерализации достигал 2,01-2,37 соответственно.

Использование биопрепаратов азотовит и fosfatovit активизирует микробное население почвы, увеличивая общую численность почти в 2 раз в сравнении с контролем – 45, 3х10⁶ КОЕ/г в ризосфере озимой пшеницы, и 52,2х10⁶ КОЕ/г в ризосфере яровой пшеницы. Особый интерес представляет сочетание бактериальных удобрений с микроудобрением. Общая численность микроорганизмов в этом варианте уступала общей численности микроорганизмов при использовании микроудобрения Аквамикс в 1,3 на озимой пшенице и в 1,4 раза на яровой пшенице.

Динамика численности микроорганизмов, использующих органические формы азота, подчиняется общей закономерности. При использовании микроудобрения Аквамикс их численность самая наибольшая как на озимой, так и на яровой пшенице. При использовании бактериальных препаратов (Азотовит+Fosfatovit), численность этих организмов возрастает в 2,1 - 2,2 раза в сравнении с контролем.

Необходимо отметить, что максимальное количество почвенных грибов было отмечено в посевах яровой и озимой пшеницы при использовании бактериальных препаратов Азотовит и Фосфатовит 86,2-120,3 тыс./г почвы.

В корневой зоне озимой пшеницы численность актиномицетов превышает численность этих микроорганизмов в ризосфере яровой пшеницы. Коэффициент минерализации, характеризующий соотношение групп микроорганизмов, использующих минеральные и органические формы азота, в посевах озимой пшеницы при применении бактериальных удобрений и микроэлементов приближается к единице 1,06-1,10. Противоположная закономерность установлена в микробном ценозе пахотного слоя в посевах яровой пшеницы, в вариантах с применением биопрепаратов и микроудобрений абсолютное значение коэффициента минерализации снижается, но остается высоким в пределах 1,39-1,89. Таким образом, полученные результаты позволяют установить достоверное влияние предпосевной обработки семян озимой и яровой пшеницы биопрепаратами и микроудобрениями на показатели биологической активности почвы. Наибольшая биологическая активность темно-серой лесной почвы по всем изучаемым параметрам установлена при обработке семян зерновых культур микроудобрением Аквамикс.

Показано положительное действие растительно-микробных взаимодействий, возникающих под действием биопрепаратов Азотовита и Фосфатовита и микроудобрения в растениях и почве. Установлено достоверное влияние предпосевной обработки семян озимой и яровой пшеницы биопрепаратами и микроудобрением на активизацию микробиологической деятельности почвы, что проявляется в увеличении общей биогенности – числа обитающих в почве микроорганизмов в 1,7-2,3 раза в сравнении с контролем. В корневой зоне озимой пшеницы численность актиномицетов превышает численность этих микроорганизмов в ризосфере яровой пшеницы. Коэффициент минерализации в посевах озимой пшеницы при применении бактериальных удобрений и микроэлементов приближается к 1,06 - 1,10, а в микробном ценозе
пахотного слоя в посевах яровой пшеницы абсолютное значение коэффициента минерализации остается высоким в пределах 1,39-1,89.

Библиография:
ПРИЧИНЫ АКТИВИЗАЦИИ ОТРАСЛЕВОЙ ИНВЕСТИЦИОННОЙ ПОЛИТИКИ РЕГИОНОВ
REASONS OF ACTIVIZATION OF BRANCH INVESTMENT POLICY OF REGIONS

Михалев А.
ФГБОУ ВО «Орловский государственный аграрный университет»
8105050@mail.ru

Ключевые слова: инвестиции, государственное регулирование, инвестиционная политика, сельское хозяйство, регион, ВТО (Всемирная торговая организация).

В современных условиях вступления России во Всемирную торговую организацию одним из ограничений в развитии аграрного сектора является недостаточное привлечение инвестиций в отрасль. Низкая инвестиционная активность в прошедшие годы, масштабы инвестиций в основной капитал сельского хозяйства не соответствуют реальным потребностям обновления и модернизации производственного аппарата. Поэтому наиболее актуальной задачей развития аграрной отрасли становится формирование благоприятного инвестиционного климата и активизация инвестиционной деятельности всех хозяйствующих субъектов региона. Устойчивое развитие аграрного сектора региона связано, прежде всего, с решением задач привлечения инвестиций как основы его технико-технологической модернизации и повышения конкурентоспособности.

Модернизация агропромышленного комплекса обусловливает необходимость совершенствования инструментов и методов привлечения инвестиций в сельское хозяйство. В последние годы, несмотря на государственную поддержку, оказываемую сельхозтоваропроизводителям в рамках Государственной программы развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия до 2015 года, ее объемы остаются недостаточными для полномасштабной реализации Доктрины продовольственной безопасности Российской Федерации, принятой в январе 2010 г. Такое положение вызвано тем, что собственных инвестиционных ресурсов у аграрных товаропроизводителей недостаточно для модернизации и обновления средств производства, отвечающей инновационному укладу развития сельского хозяйства [3, c.5].

Как известно, ускоренное развитие отрасли сельского хозяйства ограничивается целым рядом сдерживающих факторов: низкие темпы технико-технологической модернизации сельскохозяйственного производства; высокий уровень износа основных производственных фондов; усиленная конкуренция на агропродовольственном рынке из-за субсидируемой импортной продукции зарубежных производителей и поставщиков; опережающий рост цен на поставляемые средства производства и др. [4, c.181].

Поскольку необходимо разработать комплекс мер и механизмов, обеспечивающих приток инвестиционных ресурсов в аграрную отрасль, отвечающих реалиям хозяйственной деятельности субъектов аграрного
предпринимательства и охватывающих широкий круг товаропроизводителей сельскохозяйственного сырья и агропродовольствия [5, с.42].

В настоящее время методы и рычаги государственного воздействия на инвестиционные процессы в сельском хозяйстве ориентированы преимущественно на предоставление субсидируемых кредитов в качестве заемных источников инвестиционной деятельности. В то же время потенциальные инвестиционные ресурсы, которые в существенных объемах могут быть привлечены в сельское хозяйство за счет организации эффективной системы инвестиционно-ипотечного кредитования, до настоящего времени доступным только узкому кругу аграрных товаропроизводителей.

Для организации привлечения и освоения инвестиционных ресурсов необходимо применение методов регулирования инвестиционной деятельности, направленных на повышение эффективности производства сельскохозяйственної продукции, которые должны отвечать соответствующему уровню развития (циклу) национальной экономики, где ключевое место отводится вопросам активизации инвестиционной деятельности в сельском хозяйстве. Привлечение инвестиций в сельское хозяйство включает формы, методы и инструменты регулирования, в том числе государственного, отношений между участниками инвестиционных процессов в сельском хозяйстве [6, с.93].

Регулирование осуществляется на основе прямых (административные, организационно-распорядительные и др.) и косвенных методов (экономические и социально-психологические; централизованные и децентрализованные) [2, с.19].

В целом, причинами активизации отраслевой инвестиционной политики регионов выступает состояние развита аграрного сектора и нестабильная политическая обстановка в мировом пространстве, которая блокирует привлечение внешних и внутренних инвестиций, поэтому возникает задача существенного изменения стратегии и тактики аграрной реформы.

Таким образом, необходимо усиление государственного регулирования на переходном этапе, которое надо рассматривать в тесном взаимодействии с развитием предпринимательства и проблемами саморегулирования на микроуровне.

В. Войтех следующим образом определяет цели государственного регулирования аграрного рынка: «первая основная цель регулирования рынка – гарантирование определенного уровня самообеспечения страны продовольствием», а «стабилизация рынка продовольствия и сельскохозяйственной продукции, устранение слишком резких колебаний цен на рынке – это вторая основная цель регулирования рынка...» [1, с.62].

С.В. Киселев выделяет следующие принципы государственного регулирования сельского хозяйства: принцип аграрного протекционизма, предполагающий защиту сельского хозяйства во взаимоотношениях его с другими отраслями и регулирование импорта продовольствия в интересах отечественных товаропроизводителей; принцип сочетания экономических и социальных целей, когда меры государственного регулирования учитывают ценностные ориентации, поведение различных групп населения; принцип сочетания индикативности и директивности, который вытекает из наличия разнородных систем управления и предприятий различных форм собственности (унитарные, частные, смешанные) при доминировании индикативности по мере продвижения к рынку; принцип программного регулирования, отражающий
форму осуществления воздействия государства на аграрный сектор (разработка и реализация различных программ – межотраслевых, отраслевых, продуктовых, функциональных, региональных) [4, с.187].

П.Ф. Парамонов дополняет их такими важными принципами, как: принцип стабилизации агропродовольственного рынка (смягчение колебаний спроса и предложения); принцип поддержания эквивалентности обмена между сельским хозяйством и другими отраслями экономики, паритета и регулирования доходов сельхозтоваропроизводителей; принцип учета региональных условий и особенностей сельского хозяйства [7, с.435].

В связи с тем, что задачи государства в области регулирования аграрного производства можно свести к обеспечению, во-первых, достаточного уровня доходности сельских товаропроизводителей, и, во-вторых, развития сельских территорий, инструменты государственного регулирования аграрного производства можно условно разделить на две группы:

1) инструменты по повышению эффективности сельскохозяйственного производства;

2) инструменты по обеспечению социальной защищенности сельского населения и развитию социально-производственной инфраструктуры сельских территорий.

Системный подход к проблеме государственного регулирования АПК предполагает разработку адекватного организационно-экономического механизма, методов и инструментов его воздействия на процесс расширеноого воспроизводства в аграрной сфере экономики.

Организационно-экономический механизм государственного регулирования АПК представляет собой комплекс мер государственного регулирования, обеспечивающий непрерывность и стабильность сельскохозяйственного производства, а также технологически связанных с ним отраслей.

В современных условиях вступления России во Всемирную торговую организацию одним из ограничений в развитии аграрного сектора является недостаточное привлечение инвестиций в отрасль. Низкая инвестиционная активность в прошедшие годы, масштабы инвестиций в основной капитал сельского хозяйства не соответствуют реальным потребностям обновления и модернизации производственного аппарата. Поэтому наиболее актуальной задачей развития аграрной отрасли становится формирование благоприятного инвестиционного климата и активизация инвестиционной деятельности всех хозяйствующих субъектов региона. Устойчивое развитие аграрного сектора региона связано, прежде всего, с решением задач привлечения инвестиций как основы его технико-технологической модернизации и повышения конкурентоспособности.

Модернизация агропромышленного комплекса обусловливает необходимость совершенствования инструментов и методов привлечения инвестиций в сельское хозяйство. В последние годы, несмотря на государственную поддержку, оказываемую сельхозтоваропроизводителям в рамках Государственной программы развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия до 2015 года, ее объемы остаются недостаточными для полномасштабной реализации Доктрины продовольственной безопасности Российской Федерации, принятой в январе 2010 г. Такое положение вызвано тем,
что собственных инвестиционных ресурсов у аграрных товаропроизводителей недостаточно для модернизации и обновления средств производства, отвечающей инновационному укладу развития сельского хозяйства [3, с.5].

Как известно, ускоренное развитие отрасли сельского хозяйства ограничивается целым рядом сдерживающих факторов: низкие темпы технико-технологической модернизации сельскохозяйственного производства; высокий уровень износа основных производственных фондов; усиленная конкуренция на агропродовольственном рынке из-за субсидируемой импортной продукции зарубежных производителей и поставщиков; опережающий рост цен на поставляемые средства производства и др. [4, с.181].

Поэтому необходимо разработать комплекс мер и механизмов, обеспечивающих приток инвестиционных ресурсов в аграрную отрасль, отвечающих реалиям хозяйственной деятельности субъектов аграрного предпринимательства и охватывающих широкий круг товаропроизводителей сельскохозяйственного сырья и агропродовольствия [5, с.42].

В настоящее время методы и рычаги государственного воздействия на инвестиционные процессы в сельском хозяйстве ориентированы преимущественно на предоставление субсидируемых кредитов в качестве заемных источников инвестиционной деятельности. В то же время потенциальные инвестиционные ресурсы, которые в существенных объемах могут быть привлечены в сельское хозяйство за счет организации эффективной системы инвестиционно-ипотечного кредитования, до настоящего времени доступным только узкому кругу аграрных товаропроизводителей.

Для организации привлечения и освоения инвестиционных ресурсов необходимо применение методов регулирования инвестиционной деятельности, направленных на повышение эффективности производства сельскохозяйственної продукции, которые должны отвечать соответствующему уровню развития (циклу) национальной экономики, где ключевое место отводится вопросам активизации инвестиционной деятельности в сельском хозяйстве. Привлечение инвестиций в сельское хозяйство включает формы, методы и инструменты регулирования, в том числе государственного, отношений между участниками инвестиционных процессов в сельском хозяйстве [6, с.93].

Регулирование осуществляется на основе прямых (административные, организационно-распорядительные и др.) и косвенных методов (экономические и социально-психологические; централизованные и децентрализованные) [2, с.19].

В целом, причинами активизации отраслевой инвестиционной политики регионов выступает состояние развяза аграрного сектора и нестабильная политическая обстановка в мировом пространстве, которая блокирует привлечение внешних и внутренних инвестиций, поэтому возникает задача существенного изменения стратегии и тактики аграрной реформы.

Таким образом, необходимо усиление государственного регулирования на переходном этапе, которое надо рассматривать в тесном взаимодействии с развитием предпринимательства и проблемами саморегулирования на микроуровне.

В. Войтых следующим образом определяет цели государственного регулирования аграрного рынка: «первая основная цель регулирования рынка – гарантирование определенного уровня самообеспечения страны продовольствием», а «стабилизация рынка продовольствия и
сельскохозяйственной продукции, устранение слишком резких колебаний цен на рынке - это вторая основная цель регулирования рынка...» [1, с.62].

С.В. Киселев выделяет следующие принципы государственного регулирования сельского хозяйства: принцип аграрного протекционизма, предполагающий защиту сельского хозяйства во взаимоотношениях его с другими отраслями и регулирование импорта продовольствия в интересах отечественных товаропроизводителей; принцип сочетания экономических и социальных целей, когда меры государственного регулирования учитывают ценностные ориентации, поведение различных групп населения; принцип сочетания индикативности и директивности, который вытекает из наличия разнородных систем управления и предприятий различных форм собственности (унитарные, частные, смешанные) при доминировании индикативности по мере продвижения к рынку; принцип программного регулирования, отражающий форму осуществления воздействия государства на аграрный сектор (разработка и реализация различных программ – межотраслевых, отраслевых, продуктовых, функциональных, региональных) [4, с.187].

П.Ф. Парамонов дополняет их такими важными принципами, как: принцип стабилизации агропродовольственного рынка (смягчение колебаний спроса и предложения); принцип поддержания эквивалентности обмена между сельским хозяйством и другими отраслями экономики, паритета и регулирования доходов сельхозтоваропроизводителей; принцип учета региональных условий и особенностей сельского хозяйства [7, с.435].

В связи с тем, что задачи государства в области регулирования аграрного производства можно свести к обеспечению, во-первых, достаточного уровня доходности сельских товаропроизводителей, и, во-вторых, развитию сельских территорий, инструменты государственного регулирования аграрного производства можно условно разделить на две группы:

1) инструменты по повышению эффективности сельскохозяйственного производства;

2) инструменты по обеспечению социальной защищенности сельского населения и развитию социально-производственной инфраструктуры сельских территорий.

Системный подход к проблеме государственного регулирования АПК предполагает разработку адекватного организационно-экономического механизма, методов и инструментов его воздействия на процесс расширенно го воспроизводства в аграрной сфере экономики.

Организационно-экономический механизм государственного регулирования АПК представляет собой комплекс мер государственного регулирования, обеспечивающий непрерывность и стабильность сельскохозяйственного производства, а также технологически связанных с ним отраслей.

П.Ф. Парамонов выделяет следующие формы государственного регулирования сельского хозяйства, которые выступают внешним проявлением содержания процесса активности отраслевой инвестиционной политики регионов со стороны государства: административно-правовая – через законодательство, управление государственной собственностью, доведение госзаказа, установление цен, тарифов, естественных монополий, таможенных пошлин, через мониторинг и контроль; рыночная – основана на экономическом регулировании аграрного рынка; организационно-экономическая – через
разработку прогнозов, концепций, программ, индикативных планов, содействие государства развитию интеграционных проектов и инвестиционной привлекательности АПК; финансово-экономическая – через поддержку эквивалентности обмена между сельским хозяйством и другими отраслями экономики, паритета доходов сельхозтоваропроизводителей, использование финансовых инструментов; социально-экономическая – основана на приоритетности и мерах социального развития предприятий, сельских территорий, повышения занятости и снижения сельской безработицы; эколого-экономическая – через осуществление мер по экологизации агропромышленного производства, соблюдение природоохранного законодательства [7, c.452].

В основе систематизации форм и методов воздействия региональных органов управления на активизацию инвестиционной деятельности должен быть положен принцип прямого и косвенного влияния.

Достижение целей государственной сельскохозяйственной политики осуществляется системой мер государственного регулирования и управления сельским хозяйством. При этом основными принципами государственной сельскохозяйственной политики являются: устойчивость, адресность, гарантированность, разграничение полномочий, соблюдение равных условий конкуренции сельскохозяйственных товаропроизводителей и единого экономического пространства в стране, учет международных обязательств. Анализ государственной политики в отношении АПК, осуществляемый до последнего времени в нашей стране, показывает, что она направлена на решение текущих задач, а не на предотвращение обвального спада сельскохозяйственного производства [8, c.23].

Получив наше направление политики государства в аграрном секторе должно заключаться в его структурных преобразованиях, технологическом обновлении. Это позволит, как показывает практика, снизить себестоимость продукции в 1,5–2,0 раза при одновременном росте производства [9, c.18]. В отличие от западных стран, для России характерен высокий потенциальный спрос на продовольствие, что также будет способствовать увеличению его производства при повышении реальных доходов населения и стабилизации розничных цен. Вышеназванные условия требуют необходимость создания приоритетов структурных преобразований в сельском хозяйстве не только для АПК, но и для всей экономики страны. Помимо высокого уровня непосредственной отдачи вложений в сельское хозяйство, как системообразующий сегмент экономики, эта отрасль становится все более значимым катализатором общего экономического роста.

Выводы. В целом, специфика региональной инвестиционной политики заключается в более узком круге доступных инструментов регулирования инвестиционной деятельности и в некоторой подчиненности инвестиционной политике федерального уровня, особенно в сфере законодательного регулирования.

На практике регионы имеют возможность применять следующие методы проведения инвестиционной политики: предоставление налоговых льгот участникам инвестиционной деятельности (регулирование ставок некоторых федеральных налогов, поступления от которых зачисляются в региональные бюджеты, установление региональных и местных налогов в соответствии с законодательством федерального и регионального уровня, создание на своей
территории свободных экономических зон с особо льготными налоговыми условиями для инвесторов); создание за счет средств региональных бюджетов страховых и залоговых фондов, гарантирующих соблюдение обязательств перед инвесторами; участие региональных органов власти в инвестиционной деятельности через предоставление бюджетных кредитов, выпуск государственных займов, государственных инвестиций. Регионы могут даже влиять на методы регулирования инвестиционной деятельности на федеральном уровне – посредством законодательной инициативы.

Таким образом, регионы обладают богатым инструментарием для регулирования инвестиционной деятельности с целью достижения главной задачи инвестиционной политики – создания необходимого уровня инвестиционной активности и эффективной направленности инвестиций.

Библиография:

2. Гайдук, В.И. Проблемы и перспективы развития предпринимательской деятельности предприятий АПК / В.И. Гайдук, И.В. Самодуров, Н.В. Гайдук, О.В. Козаченко. – Краснодар, 2000. – 169 с.
A DECREASE IN AGRICULTURE LAND FOR FOOD CROPS AND WELFARE IN INDONESIA: COMPUTABLE GENERAL EQUILIBRIUM ANALYSIS

Agnes Quartina Pudjiastuti
Indonesia
agnespudjiastuti@yahoo.com

Key words: land use for food crops, income, welfare, elasticity.

The need for food is positively correlated with the growth of population. However, if a place to produce food continuously degraded over time both quality and quantity, then the food needs will also be increasingly fulfilled. Land conversion to settlement and industrialization not the only factor causing shrinking of agricultural land, but also damage to land due to human activities that are less well, climate change and natural disasters. How can the impact of the shrinking agricultural land to welfare of society in Indonesia are crucial study.

This study uses a static CGE model which aggregates Indonesian economy into 12 sectors with 8 groups of households and 3 primary input. Data base of this analysis was Table 10 and SAM Indonesia in 2008. A wide range of elasticity needed to processing data derived in other research. The results showed that agricultural land shrinkage of 5-10% have a negative impact on some groups of households in Indonesia. Household income of agricultural entrepreneurs, urban households with low income and high-income each decreased by 0.16%; 0.15% and 0.17% with a decrease in agricultural land. However, decline in agricultural land area does not affect their welfare. Enterprises and governments are also not affected by this situation. Results of this analysis was highly dependent on the accuracy of data, elasticity and production function that was used.

References:
INFORMATION PROVISION OF LAND AREAS

Puzynya T.A.
Velikolukskaya State Academy of Physical Culture and Sports, Russia
tatianlex@yandex.ru

Key words: accounting, information technology, land area, agricultural land, abandoned land.

The distinctive feature of land registration in agriculture is the lack of monetary value of all the areas, which does not allow to fully appreciate the damage caused to agriculture by derelict land, especially agricultural land. Nevertheless, the economic assessment should be subjected to all the lands with obligatory consideration of the complex of natural, territorial, legal, technological and economic factors, the environment and production [1]. After the termination of state support for most of the agricultural land was abandoned today "in our rich natural resources will remain 8% of arable land that meets international standards for fertility" [2].

The government understands the situation, so to monitor the state of fertile land in our country in 2009 was introduced "Procedure for state registration of indicators of fertility of agricultural land". Also valid concept of the federal target program "Conservation and restoration of soil fertility of agricultural land and agricultural land as a national heritage of Russia in 2006-2010", approved by Decree of the RF Government of 01.10.2005. For the preservation and restoration of existing agricultural land is necessary to complete the application of mineral and organic fertilizers, accompanied by chemical amelioration. Improper use of technical measures contributes to poor circulation and changes in the balance of nutrients in the soil, reduces the agronomic properties and soil fertility, and this leads to a reduction in yields of major crops. Therefore, it is important to control both the state of the soil and fertilizers are made to it, the information on these changes can be found on the basis of accounting data. [3]

Knowledge of the relationship tillage and arable crops will allow management companies to find reserves to reduce the cost of production and reduce unreasonable expenses. In the above example, to achieve the maximization of profit must be "holding a single harrowing at 6-8 cm, which will increase the net income during a single cultivation with harrowing to the same depth of 49.2 manats/ha" [4].

Thus, the information provision of land should include information on the fertility of the soil (humus profile, reserves of humus in the humus profile, humus content in the arable layer, the amount of absorbed bases, acidity, content of physical clay, the degree of erosion of the soil, the degree of waterlogged soil, phosphorus and potassium mg per 1 kg of soil), information about the sown crops, data on the fertilizer data, calculation of economic efficiency seeded crops (tillage, seeded culture, the number of weeds at the end of the growing season, yield, profitability, profit / loss of 1 ha), reflected in the accounting records (cadastral value, calculated and paid tax on land, the amount of lease payments).

References:
RURAL SOCIETY OF MONTENEGRO IN THE PAST AND THE FUTURE

Goran Rajović, Jelisavka Bulatović
College of Textile Design, Technology and Management, Belgrade, Serbia
dkgoran.rajovic@gmail.com

Key words: Montenegro, rural villages, past and future.

Scientific interest in rural society created late 19 and early 20 centuries, when the village and agricultural society becomes affected global social processes of industrialization, urbanization and modernization. Then, there is a need to the whole a tangle of social processes and practical problems rationally understand and explain. In today's world the rural society is undergoing tumultuous changes, accompanied by great difficulty fitting into the dominant trends of modern society. Rural area of Montenegro is characterized by low population density, negative demographic trends (depopulation, age of the population, it is the lack of vital population), small farms, underdeveloped rural infrastructure, non-defined strategy for the development of rural areas with clear priorities, unfavorable educational structure of the population in agriculture, lack of organization. Here are some examples which this confirm. Namely territory of Montenegro covers a total of 1,216 rural settlements, of which 1948 were only 212 rural settlements with fewer than 100 inhabitants, while according to the data of the Statistical Office of Montenegro (2004) in 2003 in the category of rural settlements to 100 residents is even 660 villages. Obviously, it is a radical change of structure of rural settlements or the depopulation of the greater part of the hilly and mountainous areas of Montenegro. On it indicating data for 2003 when the total number of rural villages (1,216), unpopulated was 28 or 2.23%; to 10 population 100 or 7.96%; from 10 to 30 population 175 or 13.93%; from 30 to 50 population 123 or 9.79%; between 50 and 100 inhabitants 234 or 18.63%, over 100 people 596 villages or 47.45% of the total number of rural villages in Montenegro. According to last Census results of Agriculture on Montenegrin households today live 98,949 people, which also represent the labor force households. Of the total working-age population of them 23,204 are over the age of 65 years. Least is of those that are will in progressive are households should be the highest; only 7% of the workforce Montenegrin households are younger than 24 years. Secondly, most family households in Montenegro have between one and four members. Of the total number of households (48 824) convincingly most of those households have from 1 to 2 members, even 37,518 or 76.8%; 3 to 4 members has 9,686 (19.84%) households; 5 to 7 members, numbering 1,424 (2.93%), while households is convincingly the least of those households with more than 7 members which were once the backbone rural areas, they have only 196 or 0.43%. Rural area of Montenegro may be seen from the cultural, ecological, social and economic paradigm. Formerly the rural area Montenegro had only two functions: agriculture and housing. Today they are occurring and some new features for vacation, recreation, preservation of natural and cultural heritage and biological and ecological diversity. The question is what will happen in the future with existing rural organizations Montenegro.

References:

USAGE OF INNOVATIVE PROJECTS IN MANAGEMENT OF AGROFORMATIONS

Zvereva Galina, Gamgurg Sergey, Sknarin Oleg
Volgograd State Agrarian University, Volgograd, Russia
gzvereva@list.ru

Key words: management, project, agro-industrial complex.

An important feature of the present stage of economic development is increasing of the role of innovations for the nearest achievements in business. Any changes in the situation in the environment require a revision of the role and a place of innovations in activity of the enterprises. Innovations define future development of enterprises and are closely connected with considerable changes in production, marketing and management of the organization. Especially this question is relevant for agricultural sphere.

Agriculture used to be and still is a basis of any economy. For such country, as the Russian Federation, it is not simply important, but strategic branch. Agriculture provides the population of the country with food and processing industry – raw materials. More than a half of consumer goods are made from agriculture production and therefore the population standard of living directly depends on efficiency of this branch. Food security of the country, being a component of its national security, acts as a guarantee of stable satisfaction of requirements of the population in food [3].

In addition to its importance for the economy, the current agriculture is characterized by the fact that it has the lowest level of informational technology equipment and as a result, loses in competitive fight to foreign, more developed farms of this branch and consequently provides prospect of development in the field.

In the third millennium of manufacturing resources used in production today, by no means informational ones come to the 1st place. Besides, in the most developed countries of the world information resources considerably surpass all other types, whereby the post-industrial society, which is based on a tangible product, gives way to the information society, based on the information itself. In the economic literature there is an indication that the transition from post-industrial to an information society is inevitable for the world [1].

In "Strategy of development of information society of the Russian Federation" Putin V.V. noted that "The increase in the added cost in economy occurs today considerably due to intellectual activity, increase of a technological level of production and distribution of modern information and telecommunication technologies" [4].

In conditions of country's transition to informational society the usage of advantages of network economy in agro-industrial production becomes an imperative need. Both the Russian and the foreign economic literature widely covered different aspects of functioning of small forms of managing in an agro-industrial complex and growth of their efficiency in the transition to the interaction on the basis of informational and communication technologies.

Russia entered the World Trade Organization (WTO) where any participant of agrarian production has already got a free access to means of information and communication infrastructure, whereby the level of agricultural development in countries with developed market economies is much higher than that in our country. So if we do not provide the minimum level of development of information and
communication infrastructure as soon as possible, the country, having carried out accession to WTO, will almost totally dependent on the production of agricultural products from Western countries as agricultural production in our country be no means is not competitive with Western one [2].

It is obvious that there is underdevelopment and slow development of agro-industries of modern technology, lack of professionally trained management branches of agriculture and insufficient attention to the level of training in the development and use of information technology. This situation leads to increasing of the backlog in agro-industrial sector in questions of informatization of their economic and industrial activities from the developed countries of the world and domestic industries. To afford lag means to doom them to preservation of low competitiveness with more advanced in this respect developed Western countries, and therefore, to possibility of food dependence on them [1].

The modern view on business in any branch implies the strict accounting of all financial operations, maintaining total statistics of own enterprise and tracking of competitive positions of competitor companies, ability to inform goods to the consumer in predicted terms and to keep in continuous, continuous communication with partners. It is also necessary to be able to make the correct, appropriate conclusions by analyzing the performance of the enterprise market and resource efficiency.

Certainly, it is difficult, but as the way out from this current situation can be the Internet resource, where the enterprises of Russian agro-industrial complex are registered. By means of this Internet resource the organization can easily find partners or potential clients, and consumers can find the necessary agricultural product and even get a job vacancy.

In an enterprise’s profile there will be an opportunity to add our own data into prepared forms of the reporting for the recent years, on the basis of which the program will give out the main economic indicators, among which are growth rates, levels of efficiency of use of resources, level of bankruptcy and many other things. It will allow the head of the enterprise even being far off, knowing login and the password, to get to know about the state of the enterprise in an accessible and clear form.

Agriculture is characterized by its specificity of production so here on the basis of information about activity of the enterprises it is possible to carry out statistics and rating of cultivated culture in the region, thereby to compare production efficiency, usage of resources and technology of cultivation on a certain territory.

Similar reports and comparisons can be carried out at the prices of realization of agricultural products. After the harvest, you can set the announcement of selling any goods at a certain price. Then, the manufacturer will increase his chances to get new business partners who want to buy goods, and the costumer will have the opportunity to buy all that necessary at the best price.

The informational and analytical network project GoAgro, developed by us, can be one of solutions of these problems. The project represents the computer program the usage of which will help to use effectively functions of specialists of the agroenterprise, to help the enterprise in search of new business partners and potential consumers. To consumers, in turn, it will help to find a necessary product in a short time, without any intermediaries.

Having passed to a site http://goagro.ru, the user first of all is given opportunity to define his status (the natural or legal entity) that will affect on the further behavior of the program. The natural entity is given opportunity to carry out the search of production of agriculture, processing or agricultural machinery within chosen criteria.
Having chosen the enterprise, the user will have possibility of viewing the profile, where all the necessary information is given – types of products, partners, businesses, jobs, contact information and a description of the enterprise.

In a mode of the legal entity (Agro enterprise) the following opportunities are available: automated economic and financial analysis of the company; reflection of statistical and economic information on a concrete type of production made by the enterprise, such as prime cost of this production, profitability, profit on realization of this production; opportunity to offer the goods to partners and to receive offers from partners; adding the enterprises in partners, the user has opportunity to exchange messages, documents, to quote records, to offer goods to the partners, to conduct electronic document circulation; opportunity to publish articles on its own behalf, to quote articles of the partners, to place announcements; to compare some economic indicators to indicators of the enterprises of the region and to define the situation in a rating among competitors.

So, by means of global informational network system and project GoAgro it is possible to solve the following actual problems of economy in agriculture at microlevel: manifestation of the world economic system, raw, commodity and financial markets; there is a virtualization of exchange of information and activity of natural and legal entities and other organizations of agro-industrial complex; there is a deleting of external territorial borders of regions which become virtually permeable; there is an increasing of informational role as the main factor of production and a role of intellectual property; the possibilities of obtaining the income connected with innovative business, electronic activity and business in the Internet are increasing; there’s a development of electronic and remote forms of employment; there are electronic forms of regulation of economic and social activities, as well as electronic forms of management and the ability to conduct market research; there is strengthening of competitive fight between the enterprises, corporations the victory in which demands constant advancing innovations and necessity of adoption of operational decisions for support of continuous competitive fight in the market.

In conclusion, thanks to full usage information and communication systems, the agriculture of the Russian Federation becomes more mobile, modern, competitive branch meeting the modern requirements which will be able not only to survive, but to function adequately with the enterprises of the World Trade Organization. Taking into consideration only reasonable and concrete measures it is possible to achieve expansion and strengthening of domestic market, ensuring food security and a conclusion of agro-industrial complex of Russia to higher level that is relevant and necessary today.

References:
ВТОРИЧНЫЙ АРЕАЛ ДАЛЬНЕВОСТОЧНЫХ ИНВАЙДЕРОВ – «СВЯЗЬ БЕЗ ГРАНИЦ»
SECONDARY AREA OF THE FAR EAST INVADERS – «COMMUNICATION WITHOUT BORDERS»

Серая Л.Г.
Главный ботанический сад им. Н.В. Цицина РАН, Москва, Россия
lgseraya@gmail.com

Звягинцев В.Б.
Белорусский государственный технологический университет, Минск, Беларусь
mycolog@tut.by

Глинушкин А.П.
Всероссийский научно-исследовательский институт фитопатологии, Московская область, Россия
glinale@gmail.com

Баранчиков Ю.Н.
Институт леса им. В.Н. Сукачева СО РАН, Красноярск, Россия
baranchikov-yuri@yandex.ru

Ключевые слова: ясень, ясеневая узкотелая златка, Agrilus planipennis, халаровый некроз ветвей, Hymenoscyphus fraxineus, инвазийный вид.

В июне 2014 года в западном направлении от Москвы, нами было отмечено распространение златки на придорожных посадках ясеня вдоль автомобильной трассы М1 «Москва-Минск» до уровня Вязьмы. На ясених, произрастающих в Смоленске и близлежащих лесах, следов заселения ЯИУЗ не было. Расширение ареала златки в западном направлении к границе республики Беларусь вполне прогнозируемо в течение ближайших нескольких лет.

В то же время, из Европы в восточном направлении в насыщения ясеня активно продвигается тотально распространявшаяся в Европе болезнь - халаровый некроз ветвей (суховершинность), вызываемая аскомицетом Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz, Hosoya, [=Chalara fraxinea T. Kowalski; Hymenoscyphus pseudoalbidus Queloz et al.]. С момента появления первых симптомов суховершинности ясень в Беларуси в 2003 году (Звягинцев, Сазонов, 2005) к 2014 году встречаемость халарового некроза в насаждениях ясень обыкновенного на территории страны составила 100% (Звягинцев, Шарандо, Филиппович, 2014). Изучение ареала распространения грибного инвайдера на территории России и судьба ясеней во вторичном ареале совместного
распространения обоих дальневосточных инвайдеров вызывает обоснованную тревогу.

Библиография:
2. Звягинцев В.Б., Шарандо А.В., Филиппович В.Н. Роль халарового некроза в процессе деградации ясенников Беларуси // Лесное и охотничье хозяйство. 2014. № 9. С. 8–11.
СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ШЕРСТНОЙ ПРОДУКТИВНОСТИ МОЛОДНЯКА ОВЕЦ РАЗНОГО ГЕНОТИПА
COMPARATIVE CHARACTERISTICS OF WOOL PRODUCTIVITY OF YOUNG SHEEP OF DIFFERENT GENOTYPES

Абаева К.М., Бестаева Р.Д.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: шерстный покров, ягнята, живая масса, интенсивность весового роста, крепость шерсти, толщина шерсти, интенсивность роста шерсти.

Известно, что для успешного ведения селекционно-племенной работы знание закономерностей формирования кожно-шерстного покрова у овец в зависимости от происхождения и кровности совершенно необходимо.

Учитывая вышеперечисленное, мы поставили перед собой задачу изучить процесс формирования шерстного покрова в подсосный период тонкорунных и кроссбредных ягнят, полученных от скрещивания тонкорунно-грубошерстных маток с баранами советской мясощерстной породы.

Для выполнения поставленной задачи нами были сформированы 2 группы ярочек. Контрольная группа была сформирована из ягнят с тонкой шерстью -1 группа, 2 группа была сформирована из ягнят, полученных от скрещивания тонкорунных маток с баранами советской мясощерстной породы.

В каждую группу были включены по 10 ярочек. Подопытных ягнят взвешивали на следующий день после рождения, в возрасте 1, 2, 3 и 4 месяцев, в эти же возрасты у подопытных ягнят в области бочка были взяты образцы шерсти. В возрасте 5 месяцев подопытные яръе были острижены, впоследствии в лаборатории шерсти кафедры животноводства был определен выход чистой шерсти.

Наряду с данными о живой массе ягнят, учитывались и другие показатели, такие как интенсивность весового роста, крепость шерсти, толщина шерсти, интенсивность роста шерсти.

В целом за 4 месяца жизни у подопытных ягнят живая масса увеличилась в 6,8 раза, тогда как у тонкорунных сверстниц превосходство составило 6,3.

Длина шерсти определяет технологическое назначение и является одним из факторов, обуславливающих массу руна. При сравнении длины шерсти среди навороженных ягнят первое место занимают помесные, превосходившие тонкорунных сверстниц в среднем на 16,7%.
В период первого месяца жизни длина шерсти тонкорунных ярок увеличилась в 2,4 раза, тогда как у помесных сверстниц данный показатель оказался заметно ниже. В результате этого в возрасте 1 месяца разница в длине шерсти между двумя группами сократилась до 10,3%. В следующие 2 месяца инициатива перешла к помесным ярочкам, что позволило им увеличить разрыв до 17,1%, а в период от 2 до 3 месяцев преимущество возросло до 21,1%. В целом за 4 месяца помесные ярочки отличались более высокой интенсивностью линейного рост шерсти. Таким образом, помесные ярочки как по темпам линейного роста шерсти, так и по абсолютным показателям длины шерсти превосходили тонкорунных сверстников.

Тонина шерсти является одним из физических свойств шерсти, определяющим ее технологическое использование. Уже с момента рождения видно, что по толщине шерстинок помесные ярочки превосходят сверстников. При рождении это преимущество составило 6,4%. С возрастом преимущество помесных ярок в толщине шерсти возрастает в связи с более высокими темпами роста. В совокупности за подсосный период средняя толщина шерсти помесных ярок увеличилась в 1,2 раза, тогда как у тонкорунных сверстниц данный показатель не превышает 1,1, в результате этого преимущество в толщине шерсти в пользу первых составило 11,4%.

В целом, абсолютный прирост среднего диаметра шерсти помесных ягнят составил 3,74 мкм, что на 57,8% превышает показатель тонкорунных сверстников.

Естественная длина подопытных ягнят позволило определить крепость шерсти в возрасте 2, 3 и 4 месяцев. На показатели крепости шерсти определенное влияние оказали как возраст, так и происхождение. Так, независимо от происхождения, крепость шерсти обеих групп ягнят с возрастом возросла в среднем на 9,9%, причем более интенсивный рост отмечен у помесных ярок (12,0%), чем у тонкорунных сверстниц (7,8%). В результате более интенсивного роста, крепость шерсти помесных ягнят в возрасте 4 месяцев достигла 9,98 км, что на 13,9% превышает показатель тонкорунных сверстников.

Выводы:
- за полные 4 месяца жизни абсолютный среднесуточный прирост помесных ярок составил 203,3 г что на 11,9% больше, чем у тонкорунных сверстниц, в результате этого в возрасте 4 месяцев живая масса помесных ярок достигла 27,9 кг, что на 10,7% превышает таковой показатель сверстниц (Р>0,99);
- в целом за 4 месяца жизни, длина шерсти помесных ярок увеличилась в 5,571 раза, тогда как у тонкорунных сверстниц этот показатель составил 5,417, что позволило первым иметь длину шерсти при отбивке 7,8 см, что на 20,0% больше, чем у вторых (Р>0,99);
- за подсосный период средняя толщина шерсти помесных ярок увеличилась на 15,9%, и достигла 27,3 мкм, тогда как у тонкорунных сверстниц данные показатели составили соответственно 10,7% и 24,5 мкм;
- установлено, что шерсть по крепости уже в подсосном периоде отвечает требованиям. Более высокие показатели крепости шерсти имели помесные ярочки, превосходившие тонкорунных сверстниц на 13,9%;
- использование баранов-производителей советской мясошерстной породы способствовало более активному формированию шерстного покрова ягнят в период подсоса.
EFFICIENCY OF PROBIOTICS AND PREBIOTICS IN THE TECHNOLOGY OF GROWING BROILERS

Chervonova I.V.
Orel State Agrarian University, Orel City, Russia
katya_che@bk.ru

Key words: broiler chickens, probiotics, prebiotics.

In our country close attention is paid to the problem of food supply security, in particular the ability to make sufficient quantities of foodstuffs within the country, first of all of meat. Nowadays broiler poultry farming is one of the most fast-gaining, knowledge-intensive and high-tech industries. And this industry is capable of providing the consumer market with inexpensive dietetic meat within a short time.

In the productivity indicators of broiler chickens and in the feed-gain relationship many poultry farms of Russia have already reached the world level. Use of growth stimulators, in-feed antibiotics, hormones, i.e. introduction into the birds ration only those feeds which would promote a greater yield of the demanded product without registration their influence on the representatives of normoflora, were until recently the main methods of achievement of high meat producing ability of broiler chickens. Today there are some alternatives to the above-named additives. They are probiotics and prebiotics which increase body resistance of birds, oppress growth of pathological bacteria and promote better assimilation of nutrients from feeds. It is also important that prolonged usage of these additives on the same poultry farm doesn't reduce their efficiency as contrasted with antibiotics.

References:
ВЛИЯНИЕ ЙОДИСТОГО КРАХМАЛА НА МЯСНУЮ ПРОДУКТИВНОСТЬ ЦЫПЛЯТ-БРОЙЛЕРОВ
EFFECT OF STARCH IODIDE ON MEAT PRODUCTIVITY OF BROILER CHICKENS

Дзеранова М.С., Дзеранова А.В.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: цыплята-бройлеры, йодные подкормки, продуктивные показатели.

По данным исследований на Северном Кавказе, в том числе и РСО-Алания, обнаруживается общий недостаток йода 40 – 60% в биосфере, что оказывает влияние на недостаток тиреоидной активности щитовидной железы, который оказывает влияние на физиологические показатели и продуктивность животных и птиц.

Вышесказанное стало причиной для проведения научного опыта с целью оптимизации йодного питания цыплят-бройлеров кросса «Иза-15» 42-дневного возраста.

В связи с актуальностью проблемы, в условиях птицефабрики «Михайловская» РСО-Алания был проведен опыт по использованию йодистого крахмала в кормлении цыплят-бройлеров. С этой целью сформированы две группы цыплят-бройлеров кросса «Иза-15» в возрасте 7 дней, в каждую группу были включены по 50 цыплят. Опыт продолжался по достижению цыплятам 42 дней.

Рацион цыплят контрольной группы был полностью сбалансирован по питательным веществам, в рацион опытной группы, в дополнении к основному рациону был включен йодистый крахмал в дозе 5,0 мг/гол.

В течение опыта ежедневно учитывались сохранность поголовья, расход и поедаемость кормов. Интенсивность роста цыплят в учетный период определялась путем индивидуального взвешивания через каждые 7 дней опыта по 20 голов из каждой группы. По окончании опыта был проведен контрольный убой птицы по рекомендации ВНИТИП.

Введение йодистого крахмала в рацион цыплят опытной группы способствовало повышению их сохранности на 8,0%, в контрольной группе этот показатель был 88,0%.

У подопытных цыплят, независимо от принадлежности к группе, за период опыта происходило закономерное наращивание живой массы, что подтверждается данными абсолютного весового прироста цыплят.

Введение в рацион дополнительной подкормки оказало влияние на живую массу подопытных цыплят. В начале опыта подопытные цыплята по живой массе практически не отличались, однако введение в рацион дополнительной подкормки способствовало уже в первую неделю изменить темпы весового роста опытных цыплят.

Так, за период от 7 до 14 дней абсолютный прирост живой массы опытных цыплят превысил на 12,5% таковой цыплят контрольной группы, в результате этого живая масса опытных цыплят в возрасте 14 дней достигла 343,5 г, что на 7,3% больше, чем у сверстников.
В период от 14 до 21 дней повышается разрыв до 12,9%, что повлекло и возрастание, и разницы по живой массе в возрасте 21 дня между группами до 9,8%. Указанные показатели увеличиваются и в следующие 7 дней до 25,1%, что способствовало повышению разницы и в живой массе в возрасте 28 дней в среднем на 16,3%

В последующие недели темпы весового роста снижаются, причем в период от 28 до 35 дней снижается и разрыв в абсолютном приросте живой массы между группами до 18,1%, в результате этого цыплята опытной группы в возрасте 35 дней сохранили свое преимущество в живой массе в 16,9%.

Группы были условно разделены на опытную и контрольную, перед убоем в возрасте 42 дня цыплята опытной группы по живой массе опередили сверстников на 15,4%. По абсолютному приросту в теле у цыплят опытной группы наблюдалось постоянное преимущество в живой массе над контрольной группой, темп роста в опытной группе в середину снизился, но все же превосходил контрольную на 11,6%.

Мясные качества более подробно характеризует морфологический состав тушек подопытных цыплят. Опытные цыплята превосходили сверстников контрольной группы по абсолютной и относительной массе съедобных частей тушек. Цыплята опытной группы превосходили сверстников по абсолютной массе несъедобных частей, однако они уступили им по их относительной массе.

Изучение химического состава тушек и последующее определение их калорийности дает нам возможность объективно оценить мясные достоинства подопытных цыплят.

Полученные нами данные позволили рассчитать экономический эффект использования йодистого крахмала в кормлении цыплят. Учитывая стоимость 1 кг птичьего мяса в 130 рублей, общая стоимость мяса цыплят контрольной группы составила 11936 рублей, а цыплят опытной группы – 14958 рублей с разницей в 25,3% в пользу последних.

Выводы и предложение
1. Сохранность цыплят-бройлеров, получавшей за весь период опыта йодистый крахмал в виде дополнительной подкормки, составила 96,0 %, что на 8% больше, чем в контрольной группе.
2. Включение в рацион цыплят-бройлеров дополнительной подкормки способствовало повышению интенсивности весового роста, в результате этого в возрасте 42 дней они по живой массе опередили сверстников в среднем на 15,4, по
массе потрошеных тушек и съедобных частей – на 18,4%, содержанию жира – на 1,14 абсолютного процента.

3. Расчеты показали, что общая стоимость мяса цыплят контрольной группы составила 11935,95 рубля, что на 25,35 меньше, чем аналогичная стоимость мяса цыплят опытной группы.

Для повышения количества и улучшения качества мясной продуктивности цыплят-бройлеров необходимо использовать йодистый крахмал в дозе 5,0 мг на одного цыпленка.

Библиография:
СВЯЗЬ МОРФОФУНКЦИОНАЛЬНЫХ СВОЙСТВ ВЫМЕНИ КОРОВ ШВИЦКОЙ ПОРОДЫ С ИХ МОЛОЧНОЙ ПРОДУКТИВНОСТЬЮ
CORRELATION OF MORPHOLOGICAL AND FUNCTIONAL PROPERTIES OF UDDER OF SCHWYZ BREED WITH THEIR MILK PRODUCTION

Хубеева М.М., Кадиева Т.А.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: коровы, продуктивность, патология, швикская порода.

Одним из основных требований к коровам в условиях интенсивных технологий производства молока является пригодность животных к машинному доению. Решение этой задачи в настоящее время осуществляется в двух направлениях – совершенствование доильных установок и целенаправленная селекция коров по качеству вымени при сохранении нормального состояния молочной железы.

Известно, что к основным технологическим признакам, характеризующим пригодность коров к машинному доению, относятся: форма, размеры вымени и сосков, равномерность развития долей вымени (индекс вымени), продолжительность и интенсивность доения, а также равномерность и полнота выдаивания долей вымени [2;3].

В связи с этим оценка коров по пригодности к машинному доению имеет исключительное значение. Целью нашей работы было изучить некоторые морфофункциональные особенности вымени коров в связи с продуктивностью в КФХ «Сослан» Правобережного района. При этом была проведена оценка качества вымени и пригодность коров к машинному доению. Исследования проводились на коровах швикской породы. В обработку вошло 102 коровы. В исследованиях использованы результаты оценки морфологических свойств вымени коров и данные племенного и зоотехнического учета. Изучаемые коровы на ферме были неодинаковы по возрастному составу: 28 коров первой лактации, 36 – второй лактации и 38 – коров третьей лактации и старше. В хозяйстве доение коров было двукратным с 12-часовым интервалом.

Оценку вымени подопытных коров проводили на втором-четвертом месяце лактации по методике Ф.Л.Гарькавого [1].

Изучали форму вымени и сосков, величину его, плотность прикрепления, консистенцию вымени, развитие долей, подкожных и брюшных вен, спадаемость после доения, емкость, продолжительность одного доения, интенсивность молокоотдачи.

Форму вымени оценивали визуально по следующей классификации: ваннообразное, чашеобразное, округлое, козье. Железистость вымени определяли на ощупь и по спадаемости после доения. Подразделяли вымя на железистое, средней и слабой железистости. Форму и расположение сосков оценивали также визуально. Выделили следующие формы сосков: цилиндрическую, коническую и грушевидную.

Величину вымени и сосков оценивали путем измерения. Промеры вымени и сосков брали за 30-60 минут до контрольного доения коровы.

Для определения спадаемости вымени, первые пять промеров были сняты до и после доения.
Индекс вымени – определяется отношением удоев передних четвертей к общему удою и выражается в процентах. Скорость молокоотдачи определяли путем деления величины суточного удоя на соответствующее время доения, выражая в кг/мин с точностью до 0,1.

Определение формы вымени у подопытных животных швицкой породы показало, что 62,7% коров имели чашеобразную форму вымени и 34,3% - округлую. Коров с примитивной формой вымени было 3%. Порочные формы вымени не выявлены у коров. По форме сосков, животные распределялись следующим образом: цилиндрическая – 84,3%; коническая – 14,7%. У 1 коровы соски были грушевидной формы.

78% коров характеризовались плотным прикреплением вымени. Отвисшее и имеющее перехват вымя встречалось у 22% коров, чаще у взрослых.

У коров со слабым прикреплением вымени отмечалась тенденция к ухудшению полноты молокоотдачи и снижению индекса вымени. 58% коров имели железистую консистенцию вымени. Животных со средней консистенцией выделено 34 %, с жировой - 8%. Отмечалась тенденция к уменьшению разовых удоев и скорости молокоотдачи у коров с выменем средней и жировой консистенцией. Хорошим и средним развитием подкожных вен характеризовались 28% коров, брюшных - 36%. С возрастом развитие вен улучшается. При лучшем развитии как брюшных, так и подкожных вен отмечалось некоторое увеличение удоев и скорости молокоотдачи.

Наиболее полное представление об экстерьере вымени дает сочетание глазомерной оценки с его измерением. Промеры вымени и сосков характеризуют развитие молочной железы с количественной стороны, что повышает объективность оценки величины, формы и других анатомических особенностей. С этой целью были взяты 8 промеров вымени.

Величина сосков варьировала у коров незначительно. В среднем длина передних сосков равна 6,6 см, а задних – 5,5 см. Передние соски имеют большую длину, диаметр и удаленность друг от друга, чем задние. Эта закономерность является биологической особенностью породы. С возрастом размеры сосков и расстояние между ними увеличиваются.

Возрастные изменения конфигурации вымени четко выявились при анализе соотношений промеров вымени. С возрастом отношение длины к ширине увеличивается, а отношение длины к глубине и ширины к глубине уменьшаются, что свидетельствует об отвисании и изменении конфигурации вымени.

Функциональные свойства вымени характеризуют его пригодность к машинному доению.

Важнейшим показателем оценки коров является скорость молокоотдачи. Установлено, что суточный удой коров с чашеобразной формой вымени по сравнению с другими животными был выше на 1,4-2,2 кг, индекс вымени на 1,8-4,7%. Кроме этого, более интенсивной молокоотдачей отличаются животные с чашеобразной формой вымени. Она составила 1,29 кг/мин при суточном удое 10,6 кг, что превосходит результаты других животных на 0,13-0,18 кг/мин.

На основании этих данных можно отметить, что наиболее желательными в производственных условиях являются животные с чашеобразной формой вымени.

Объем вымени определяется по формуле:
Ообъем = 0,3 х длина х ширина х глубина (передних долей).
Емкость вымени определяется по разовому удою после 12-часового интервала между дойками.

Спадаемость вымени по обхвату, длине и ширине выше у коров с чашеобразной и округлой формой вымени практически не отличается, разница существенна по сравнению с коровами, у которых примитивная форма вымени. Она составила 3,9-4,7% по обхвату, по длине – 1,7-2,2% и по ширине – 2,3-3,8%.

Эти данные косвенно указывают на то, что железистая ткань вымени значительно лучше у животных с чашеобразной и округлой формами вымени.

Учитывая селекционное значение вымени в определении племенной ценности, мы изучали взаимосвязь удоев с формой вымени коров швицкой породы в КФХ «Сослан».

Наши исследования подтверждают: коровы с наиболее желателенной (чашеобразной) формой вымени обладают значительно более высокой продуктивностью. Удой коров с чашеобразной формой вымени на 346 и 717 кг или на 9,7; 20,1% соответственно выше, чем у коров с округлой и примитивной формой. По выходу молочного жира животные с желателенной формой вымени превосходили своих сверстниц с округлой и примитивной формой на 13,8 и 27,9 кг соответственно.

Таким образом, молочная продуктивность, морфологические и функциональные свойства вымени зависят также от ее формы. Коровы молочного и молочно-мясного типа с чашеобразной формой вымени по морфофункциональным свойствам вымени и молочной продуктивности выгодно отличаются от сверстниц с округлой и козьей формой, что свидетельствует о лучшей приспособленности их к условиям промышленной технологии производства молока.

Выводы:
1. Основной массив коров швицкой породы в КФХ «Сослан» Правобережного района характеризуется удовлетворительными морфофункциональными свойствами вымени, что свидетельствует о хорошей приспособленности животных к машинному доению.
2. Основные промеры вымени увеличиваются с возрастом, более интенсивно вымя развивается в глубину и длину.
3. Спадаемость вымени в среднем составляет 12,9%; у коров с чашеобразной формой вымени – 14,5%; округлой – 13,5% и примитивной – 10,9%.
4. Швицкая порода характеризуется хорошим развитием вымени (индекс вымени в среднем выше 44%).

На основании сделанных выводов хозяйству можно рекомендовать вести селекционно-племенную работу, направленную на улучшение технологических и морфофункциональных качеств вымени. Отбирать для дальнейшего воспроизводства стада коров с чашеобразной формой вымени, со скоростью молокоотдачи не менее 1,3 кг/мин.

Библиография:
БОРЬБА С МАСТИТОМ, КАК ФАКТОР, ВЛИЯЮЩИЙ НА КАЧЕСТВО ПРОДУКЦИИ
FIGHT AGAINST MASTITIS AS THE FACTOR INFLUENCING QUALITY OF PRODUCTION

Комаров В.Ю.
ФГБОУ ВО «Орловский государственный аграрный университет»
komarov.volodya@yandex.ru

Ключевые слова: мастит, молочная железа, противомаститные препараты "Дикокомаст" и "Адимаст", средства профилактики.

В настоящее время среди заболеваний лактирующих коров мастит занимает практически ведущее место. У больных животных такой патологией в первую очередь снижается молочная продуктивность и качество продукции, при этом приносятся значительные экономические потери производителям. За год маститом может переболевать до 65-77% коров стада. Количество соматических клеток, содержание жира и белка, плотность, бактериальная обсемененность и др. – это качественные показатели молока, которые непосредственно влияют на стоимость этой продукции.

Для того чтобы снизить частоту заболеваний маститом коров и сдерживать этот показатель на низком уровне необходимо принимать комплекс мер: диагностику, лечение и профилактику патологии. С большим вниманием необходимо подходить к профилактике и лечению этой патологии.

В настоящее время уже многими производителями молока активно используются комплексные программы для систематической борьбы с данной патологией, работа которых обрисована поэтапно. Применение новых отечественных эффективных и недорогих противомаститных препаратов способно оказывать влияние на частоту заболеваний, затраты лечения и потери при браковке молока.

Библиография:
ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ РАЗЛИЧНЫХ
ПОЛИФЕРМЕНТНЫХ ПРЕПАРАТОВ «УНИВЕРСАЛ» И «ЭКОЗИМ ВИТ
F ПЛЮС» ПРИ ВЫРАЩИВАНИИ ЦЫПЛЯТ-БРОЙЛЕРОВ

EFFICIENCY OF USE OF VARIOUS POLYFERMENTAL PREPARATIONS
«UNIVERSAL» AND «EKOZIM VIT F PLUS» AT CULTIVATION OF BROILERS

Гуцаев Н.В., Курова Ф.М.,
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: рацион, цыплята-бройлеры, полиферментный препарат, живая масса, сохранность.

На современном этапе наращивание производства диетического птичьего мяса и улучшение его пищевых достоинств трудно представить без активации процессов желудочно-кишечного метаболизма, в роли стимулятора которого целесообразно использовать синергизм действия экзогенных энзимов.

Целью нашей работы явилось изучение воздействия ферментных препаратов «Универсал» и «Экозим Вит F Плюс» на сохранность и продуктивность цыплят-бройлеров.

Экспериментальная часть исследований по изучению воздействия полиферментных препаратов на хозяйственно-полезные показатели птицы проводилась на племенном репродукторе «Михайловский» Пригородного района РСО-Алания.

В опыте было изучено влияние полиферментных препаратов «Универсал» и «Экозим Вит F Плюс» на обмен веществ и продуктивность цыплят-бройлеров. Для эксперимента было отобрано 240 цыплят-бройлеров, из которых сформировали 3 группы. Первая группа цыплят-бройлеров была контрольной и получала основной рацион, принятый в птицеводческом комплексе. Бройлеры опытной группы I получали дополнительно к основному рациону - 0,1% полиферментного препарата «Универсал» и опытной группы II - 0,05% полиферментного препарата «Экозим Вит F Плюс». Основной рацион состоял из полнорационных комбикормов. Продолжительность опыта составила 38 дней.

Опытные группы формировали по принципу аналогов с учетом живой массы и физиологического состояния в суточном возрасте. Объектом исследований были цыплята-бройлеры кросса «Смена-2».

Сохранность и живая масса птицы являются важными признаками, характеризующими полноценность кормления. Наблюдения показали, что при применении ферментных препаратов «Универсал» и «Экозим Вит F Плюс» повысилась сохранность цыплят-бройлеров.

Падеж цыплят-бройлеров за период опыта сокращался в опытных группах с ферментными добавками, в первой опытной группе в 4 раза по сравнению с контрольными цыплятами, а во второй опытной группе - в 2 раза, соответственно. Бройлеры опытных групп были меньше подвержены различным заболеваниям. Сохранность бройлеров в контрольной группе за период опыта составила 90%, в первой опытной, получавшей полиферментный препарат «Универсал», 97,5%, во второй опытной группе, получавшей фермент иностранного производства «Экозим Вит F Плюс»- 95,0%, что выше контроля на 7,5% и 5,0%, соответственно.
При постановке опыта начальная живая масса цыплят бройлеров составляла 41,5–41,7 г.
За весь период выращивания бройлеры опытных групп развивались лучше бройлеров контрольной группы и достигли к 38-дневному возрасту живой массы 1871,40 г и 1895,7 г, достоверно превысив результаты контрольной группы на 10,0% и 11,4%. Среднесуточный прирост живой массы бройлеров первой опытной группы, получавшей полиферментный препарат «Универсал» местного производства, составил 48,2 г, что выше контроля на 10,2%, а среднесуточный прирост у цыплят-бройлеров во второй опытной группе - 48,8 г, что на 11,7% выше, чем у бройлеров контрольной группы. Обогащение комбикорма ферментными препаратами «Универсал» и «Экозим Вит F Плюс» позволило снизить затраты кормов на единицу продукции по сравнению с контрольной группой на 10,0%. Это обусловлено лучшей переваримостью и использованием бройлерами питательных веществ корма.
При проведении расчетов экономических показателей эффективности использования полиферментных препаратов «Универсал» и «Экозим Вит F Плюс» в составе комбикормов для цыплят-бройлеров были рассчитаны себестоимость производства 1 кг мяса, прибыль от реализации мяса и рентабельность производства продукции по каждой группе бройлеров.
Установлено, что скармливание комбикормов в сочетании с полиферментными препаратами «Универсал» и «Экозим Вит F Плюс» цыплятам-бройлерам экономически оправдано. Так, за период опытного кормления прибыль в первой опытной группе составила 16,9 рублей на одну голову, во второй опытной группе, получавших «Экозим Вит F Плюс» - 13,8 рубль. Самая высокая рентабельность производства 19% была также в первой опытной группе с добавкой «Универсал», во второй опытной группе птиц, получавших иностранный фермент - 15,4%, что на 8,7% и 5,1% выше контрольного показателя.
Следовательно для повышения количественных и улучшения качественных показателей продуктивности цыплят-бройлеров целесообразно использовать полиферментный препарат «Универсал» в комбикормах в дозе 0,1% от массы комбикорма.

Библиография:
2. Бунин А.З. Эффективность добавки протосубтилина Г3х в комбикорм при раннем откорме/ А.З. Бунин // Микробиологическая промышленность. - 2011. - Вып. 11(107).-С. 34
4. Тедтова В.В. Особенности обмена веществ у телят до 6 месячного возраста при обогащении их рациона ферментными препаратами./В.В. Тедтова.// Автореф. дисс. канд. биол. наук. Краснодар. – 1999. – С.23.
5. Тедтова В.В. Современные проблемы повышения протеиновой, витаминной и минеральной питательности кормов и кормление с.-х. животных и птицы. – Краснодар. – 1998. – С.205-206.
ВОЗДЕЙСТВИЕ МОЛОЧНО-КИСЛОЙ СЫВОРОТКИ НА МЯСНУЮ ПРОДУКТИВНОСТЬ ЦЫПЛЯТ-БРОЙЛЕРОВ

INFLUENCE DAIRY-SOUR SERUM ON MEAT EFFICIENCY OF BROILERS

Козаева З.В., Ногаева В.В.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: птицеводство, бройлеры, кормление, комбикорма, продуктивность.

Птицеводство - одна из наиболее интенсивных и динамичных отраслей агропромышленного комплекса страны. Ведущую роль в производстве птицеводческой продукции в стране принадлежит специализированным предприятиям и объединениям. Их типы и структуры формируются и совершенствуются по мере интенсификации отрасли, развития специализации, кооперации и агропромышленной интеграции [1,2].

Важную роль в развитии птицеводства сыграло увеличение производства комбикормов. С каждым годом увеличивается выпуск полнорационных комбикормов.

В птицеводстве из всех отраслей животноводства достигнуты наиболее высокие темпы научно-технического прогресса. Высокопродуктивное бройлерное производство также основывается на использовании эффективных кроссов птицы с высокими показателями энергии роста и конверсии кормов[3,4].

Исследования по изучению влияния воздействия молочно-кислой сыворотки на мясную продуктивность цыплят-бройлеров были проведены в условиях ПР "Михайловское" РСО-Алания.

Объектом исследований явились цыплята-бройлеры кросса «Кобб-500».

В ходе опыта из цыплят-бройлеров были сформированы 2 группы по 100 голов (контрольная и опытная).

Согласно схеме опыта контрольная группа получала основной рацион принятый на птицефабрике, а опытная получала основной рацион с добавлением 10% молочной сыворотки. Продолжительность опыта составила 50 дней. Молочная сыворотка задавалась утром до поения, наливая в поилки в равных количествах. Содержание напольное.

В ходе опыта мы определяли живую массу путем еженедельных взвешиваний, сохранность поголовья, расход кorma, экономические показатели.

При одинаковой начальной массе бройлеры опытных групп с возрастом превосходили своих аналогов из контрольной группы. Так в 50 дневном возрасте живая масса в опытной группе составила 2958 г, а в контрольной 2735 г. Среднесуточный прирост в опытной группе составил 58,4 г, а в контрольной 53,9 г, что на 8,3% больше по сравнению с контрольной группой.

Лучшее использование питательных веществ рациона птицей оказывает соответствующее воздействие на уровень продуктивности и качественные показатели мяса.

Кормление оказывает непосредственное влияние на убойные показатели цыплят-бройлеров, что подтверждается данными наших исследований.

Для характеристики убойных и мясных качеств был проведен контрольный убой.
Молочная сыворотка в рационах бройлеров опытной группы способствовала получению большего количества мяса, чем в контрольной группе. Масса потрошенной тушки в контрольной группе составила 2735 г, а в опытной группе 2958 г, что на 223 г больше чем в контроле.

Убойный выход у подопытной птицы в контрольной группе составил 88,9%, что на 0,8 % меньше чем у аналогов опытной группы.

По результатам опыта нами была рассчитана экономическая эффективность проведенных исследований.

В контрольной группе выручка от реализации составила 186 руб., а в опытной группе 201,1 руб., что на 15, 1 руб. больше. Рентабельность в опытной группе составила 42,62 % что на 4,84 % больше чем в контрольной группе.

Следовательно включение 10 % подсырной сыворотки к массе комбикорма, увеличило прибыль и рентабельность производства.

В промышленном птицеводстве рекомендуется введение 10 % подсырной сыворотки к массе комбикорма при выращивании цыплят-бройлеров, так как является более экономически выгодными.

Библиография:
1. Глинкова А.М. Переваримость и использование питательных веществ корма при введении в рацион молодняку крупного рогатого скота раскисленной казеиновой сыворотки // Вестник мясного скотоводства. - 2011. - Т. 3. - № 64. - С. 97-102
2. Голушко В.М., Линкевич С.А., Голушко А.В. Молочная сыворотка в кормлении сельскохозяйственных животных // Молочная промышленность. - №6. - 2006. - С. 34-37
3. Шейда Е.В., Медведев С.А. Отходы пищевой промышленности в кормлении цыплят-бройлеров // Известия Оренбургского государственного университета. - №12. - 2013. - С. 191-195
ЭТИОПАТОГЕНЕТИЧЕСКАЯ ТЕРАПИЯ СЛУЧАЙНЫХ ИНФИЦИРОВАННЫХ РАН У СОБАК

ETIOPATHOGENETIC THERAPY OF CASUAL CONTAMINATED WOUNDS OF DOGS

Персаева Н.С., Чеходариди Ф.Н., Гугкаева М.С.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: ветеринария, травмы, лечение, комплексная терапия.

Одной из первостепенных задач ветеринарной науки является поиск и внедрение в производстве доступных, дешевых и эффективных лекарственных средств.

Среди незаразных болезней, наблюдаемых в животноводстве, хирургические заболевания составляют более 40%, а травмы различной этиологии с ушибами, растяжениями, вывихи, раны и др. до 80% [4, 5]. Часто травмы носят характер открытых повреждений, которые в большинстве случаев осложняются раневой инфекцией. Основная причина возникновения травм — это нарушение зоогигиенических норм и требований к условиям содержания, эксплуатации животных, приводящих к травмам.

Актуальной задачей ветеринарных специалистов является поиск новых методов лечения и профилактики случайных инфицированных ран у собак. В настоящее время в медицинской практике формируется новое направление получившее название квантовой энергии. Большую роль в лечебно-профилактических мероприятиях имеет правильный подбор лекарственных препаратов в состав комплексной терапии [1, 2, 3, 6].

Этиопатогенетическая терапия оказывает иммуностимулирующий, антибиотерапевтический эффект, улучшает реологические свойства крови и способствует ускорению заживления случайных ран у собак.

Целью наших исследований явилось изучение эффективности применения этиопатогенетической терапии для лечения ран и ее влияние на морфологические, биохимические и иммунологические показатели крови у собак.

Научные исследования проводили в ветеринарной клинике Горского ГАУ и ветеринарной станции по борьбе с болезнями животных г. Владикавказ РСО-Алания.

Материалом для проведения опытов служили собаки разной породы с открытыми механическими повреждениями.

Для лечения больных животных было сформировано две группы (контрольная и опытная) по 6 собак в каждой группе.

Контрольную группу собак лечили общепринятым методом лечения, после проведения туалета раны, промывали 3% перекисью водорода с 10% раствором хлорида натрия и наносим на рану 10% тетрациклиновую мазь.

Опытной группе собак на рану наносили жидкую массу Кордицепс-золотой на фоне магнитно-лазерного излучения аппаратом «Витязь».

Морфологические, биохимические и иммунологические исследования проводили по общепринятым методам.
Результаты собственных исследований. Открытые механические повреждения были вызваны в результате падения животных, удара режущим предметом и при попадании под автомашину.

Нами установлено, что у всех больных животных общее состояние было угнетено, понижение пищевой возбудимости, повышение температуры тела на 1-2оС (40-41оС), учащение пульса до 125 ударов в минуту, дыхание до 26 ударов в минуту. Края раны были отечными, местная температура повышена, при пальпации отмечена болезненность, из раны наблюдали выделения гнойного экссудата.

Установлено, что у контрольной группы собак, при лечении тетрациклиновой мазью, отмечали разные колебания температуры тела, частоту пульса, и дыхания в течение четырех суток.

На 3 сутки после проведения лечения Кордицепс-золотой на фоне магнитно-лазерного излучения наблюдали умеренный отек тканей. Выделениеного экссудата отсутствовал. У животных контрольной группы (тетрациклиновая мазь) эти симптомы проявлялись только на 7 сутки после начала лечения. Полное клиническое выздоровление наступило у собак контрольной группы на 23 сутки, тогда как у опытной на 18 сутки после начала лечения.

Морфологические исследования у подопытных групп животных показали, что до лечения у всех собак наблюдали достоверное ускорение СОЭ на 6%, снижение уровня гемоглобина на 12% и увеличение количества лейкоцитов на 40%. Начиная с 5 суток лечения у опытной группы собак эти показатели имели тенденцию к нормализации, тогда как у контрольной группы на 10 сутки. Полученные результаты согласуются с данными других исследователей, изучавших показатели крови у собак с инфицированными ранами [1, 4, 6].

Биохимическими исследованиями установлено, что у всех подопытных групп собак до лечения содержание общего белка и альбуминов было низкое и составило в среднем 52,5±1,96 г/л, процентное соотношение альбуминов 42,2±10,40%. На 5 сутки после начала лечения эти показатели повысились у опытной группы по сравнению с контрольной группой.

Изучение иммунологических показателей собак с инфицированными ранами отмечалось достоверное снижение бактерицидной (БАСК) и лизоцимной (ЛАСК) активности сыворотки крови. На 5 сутки опыта отмечалось выраженное повышение этих показателей у опытной группы по сравнению с контрольной группой собак от 60,5±2,12% до 8,2±0,96% и 42,2±2,10% до 10,12±0,84% соответственно.

Клеточный иммунитет у собак подопытных групп характеризовался снижением фагоцитарной активности нейтрофилов и поглотительной способности их. На 5 и 10 сутки после начала лечения показатели клеточного иммунитета повысились ФАН и ФИ на 70,5±3,16 и 60,4±2,18% по сравнению с контрольной группой.

Следовательно, применение комплексной терапии случайных инфицированных ран у собак вызывает повышение иммунобиологической реактивности у животных, по сравнению с контрольной группой (традиционная терапия).

Применение этиопатогенетической терапии способствует более быстрому заживлению случайных инфицированных ран у собак. Полное клиническое выздоровление наступило у опытной группы на 18 сутки, тогда как у контрольной группы на 23 сутки после начала лечения.
Комплексная терапия ускоряет нормализацию иммунобиологической реактивности организма у опытной группы по сравнению с контрольной группой собак.

Библиография:
2. Веремей Э.И., Елисеев А.Н. и др. Справочник по применению лекарственных средств в ветеринарной хирургии / Э.И. Веремей, А.Н. Елисеев, В.А. Лукьянновский // Ураджай, 1989. – 263с.
4. Гадзаонов С.Г. Сравнительная эффективность лечения инфицированных ран у собак / С.Г. Гадзаонов // Актуальная аграрная наука производству: Региональная научно-практическая конференция г. Владикавказ, - 2009. – С.82-84
PROBIOTICS IN FEEDING OF CALVES

Петрукович А.Г.
ФГБОУ ВО «Горский государственный аграрный университет»
Дзабиев Т.Т.
ОАО «Мастер Прайм «Березка»
ggau@globalalania.ru

Ключевые слова: телята, кормление, пробиотики, лактозосбраживающие микроорганизмы.

Помимо применения минеральных и витаминных премиксов в рационах животных особое значение в последние годы приобретают биологически активные вещества, обеспечивающие повышение продуктивности и эффективности использования кормов. В связи с этим изыскиваются новые средства, оптимизирующие пищеварительные процессы и обмен веществ и, благодаря этому, увеличивающие питательную ценность и усвоемость веществ рациона [1]. В результате многие научные положения, касающиеся состава и функции микрофлоры животных, подверглись значительному пересмотру. Накоплены научные знания, позволяющие рассматривать микрофлору пищеварительного тракта как важнейшую экосистему, необходимую для поддержания гомеостаза в организме животного. К новому поколению пробиотиков относятся комплексные препараты, содержащие поликомпонентные пробиотики в комбинации с веществами, усиливающими их действие.

Сотрудниками ФГБОУ ВО Горского ГАУ были разработаны пробиотические добавки на основе местных штаммов лактозосбраживающих бактерий, используемые в рационах кормления цыплят-бройлеров и свиней [2]. Однако, их использование не было апробировано на крупном рогатом скоте.

Научно-хозяйственный опыт был проведен в ОАО «Мастер Прайм «Березка»» Алагирского района РСО-Алания. Для эксперимента сформировали две группы телят по 10 голов в каждой. Телятам опытной группы сквашенное Ent. faecium молоко в количестве 10% от суточной нормы задавали в смеси с основной порцией молока, индивидуально во время вечернего кормления. Животные контрольной группы получали корм без Ent. faecium. Содержание Ent. faecium в сквашенном молоке достигало 10⁹ КОЕ/мл.

Установлено, что использование культуры Enterococcus faecium селекции НИИ биотехнологии Горского ГАУ в кормлении телят способствует увеличению их живой массы, что позволяет рекомендовать применение культуры Enterococcus faecium в кормлении телят.

Библиография:
1. Соколенко, Г.Г. Пробиотики в рациональном кормлении животных / Г.Г. Соколенко, Б.П. Лазарев, С.В. Минченко // Технология пищевой и перерабатывающей промышленности АПК – № 1(5).– 2015. – С. 72-78.
ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ КРОССА ЦЫПЛЯТ-БРОЙЛЕРОВ «КОББ-500» В ОАО «МИХАЙЛОВСКОЕ»

EFFECTIVENESS OF USE BROILERS «KOBB-500»
IN JSC MIKHAYLOVSKOE

Тваури М., Битиева И. А.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: кросс, цыплята-бройлеры, «Кобб-500», линии, выводимость, инкубационные качества, приросты.

Технология производства мяса птицы должна быть ориентирована на конечный продукт с учётом требований рынка. В связи с потребительским спросом на так называемых порционных, средних и крупных бройлеров возникает необходимость дифференцированно подходить к организации технологического процесса. Следовательно, необходимо разрабатывать новые гибкие научно обоснованные технологии выращивания бройлеров, позволяющие получать туши различной массы в рамках одного производственного цикла, ориентируясь на современные высокопродуктивные кроссы мясной птицы.

В наших исследованиях была поставлена цель изучить возможность использовать новый кросс цыплят-бройлеров «Кобб-500» для производства мяса птицы на птицефабрике «Михайловская».

Четырёхлинейный кросс «Кобб – 500» создан в результате многолетней селекционной работы на основе генофондов высокопродуктивных кроссов. Был завезён из Америки в 2005 году.

Ключевая особенность бройлеров кросса «Кобб-500» - желтая кожа тушки. Это свойство очень полезно для розничной торговли, т. к. даже при кормлении бройлеров кормами, не содержащими желтый пигмент, кожа в любом случае будет иметь желтый оттенок. Оперение у этих бройлеров, как и у всех остальных, белое. Бройлерный кросс «Кобб – 500» очень продуктивен в росте за короткий срок откорма, это также его отличительная особенность. Оптимальный период убоя с 35 до 42 дней при достаточном уровне кормления. Средний вес туши бройлера должен составлять около 1,9 кг, а в возрасте 42 дня – 2,4 кг.

В возрасте от 5 до 7 недель, т.е. на заключительном этапе роста бройлеры кросса «Кобб – 500» дают наиболее высокий прирост живой массы.

В птице этого кросса хорошо сочетаются высокие воспроизводительные и мясные качества.

Для определения инкубационных качеств яиц кросса «Кобб-500» нами была проведена закладка яиц на инкубацию. Известно, что яйца кросса «Кобб-500» имеют довольно высокую выводимость.

В хозяйстве имеется собственный инкубационный цех. Он расположен в отдельном одноэтажном здании, находящемся вдали от других производственных объектов. Это здание построено и оборудовано согласно существующим нормативам. Со дня закладки яиц до вывода цыплят проводили строгий контроль за эмбриональным развитием зародышей с помощью овоскопирования яиц на 6-й и 11-й день инкубации. При первом контролном просмотре (на 6-й день инкубации) определили количество неоплодотворенных
яиц и яиц «кровь-кольцо» в каждой партии. Количество неоплодотворённых яиц составило 6 % от всех заложенных. Это укладывается в пределы нормы. По нашему предположению, главной причиной неоплодотвёрженности яиц можно считать недостаточную половую активность части самцов родительского стада.

В конце инкубации определили количество выведенного молодняка с каждой партии инкубируемых яиц и учитывали отходы инкубации

Сохранность поголовья в хозяйстве довольно высокая. В последние годы здесь не отмечалось вспышек инфекционных и инвазионных заболеваний, а также других причин, вызывающих массовую гибель цыплят.

Количество корма для цыплят нормировалось согласно существующим нормативам для их возраста. Результаты еженедельных взвешиваний показали, что за последнее время показатели приростов живой массы цыплят были удовлетворительными. На основании результатов взвешиваний были рассчитаны показатели среднесуточных приростов живой массы цыплят в хозяйстве. Расход корма на прирост 1 кг живой массы составил около 2,26 кг. Это почти соответствует нормативам.

Большое внимание было удалено устранению стрессовых факторов, которые, как известно, оказывают отрицательное влияние не только на состояние здоровья птицы, но и на её продуктивность. Рассматривая влияние стрессовых факторов в отдельности, мы имели в виду, что они воздействуют на организм во взаимном сочетании друг с другом. К стрессовым факторам можно отнести избыточные посторонние шумы, резкие изменения параметров микроклимата – внезапное изменение освещения (отключение света и др.), перебои в подаче воды, изменение режимов кормления и т. д. Следует избегать ситуаций, вызывающих стресс у цыплят, особенно в начальный период выращивания.

Наиболее высокие приросты живой массы отмечались в возрасте 6 – 7 недель, т. е. 16 и 15 г. ежесуточно, т. е. кросс «Кобб – 500» вполне отвечает существующим стандартам при условии соблюдения всех требований к содержанию и кормлению цыплят.

Выводы: кросс «Кобб-500» является высокопродуктивным и имеет перспективы для широкого внедрения его в производство; количество реализованной продукции за три анализируемых года составило в среднем 23000 кг. Уровень рентабельности в 2011 году составил - 31,0%.

Полученные нами данные позволяют нам рекомендовать предприятию в больших объёмах использовать кросс «Кобб-500» для производства мяса цыплят-бройлеров.

Библиография:
4. Тицкий И. Я. Методические указания по длительному хранению инкубационных яиц. Харьков, 2003 г.
5. Третьяков Н. П., Крок Г. С. Инкубация с основами эмбриологии. Москва, Колос, 1989 г. с. 112.
ВЫДЕЛЕНИЕ БАКТЕРИЙ РОДА BDELOVIBRIO ИЗ ПРОБ ОЗЕРНОГО ИЛА
ISOLATION OF THE BDELOVIBRIO BACTERIA FROM LAKE SILT SAMPLES

Карамышева Н.Н., Садртдинова Г.Р., Васильев Д.А.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
ugsha@yandex.ru

Ключевые слова: биоконтроль, бактерии, выделение культур.

Антагонистические взаимоотношения между микроорганизмами в природе распространены довольно широко. Угнетающее воздействие отрицательную микрофлору могут оказывать бактериофаги, бделловибрионы, фитопланктон, фитобентос, микроорганизмы, выделяющие антибиотические вещества, а также протозоа и метазоа. Однако воздействие большинства этих факторов изучено слабо. Бактерии рода Bdellovibrio открыты около 40 лет назад. В 1963 году Штольмом и Старром был впервые описан вид грамотрицательных облигатно аэробных бактерий-Bdellovibrio bacteriovorus. Еще два вида (Bdellovibrio starrii и Bdellovibrio stolpii) были перенесены в отдельный род Bacteriovorax [1]. Одной из особенностей этого рода является способность паразитировать на других грамотрицательных бактериях (в том числе на возбудителях опасных эпидемических болезней, например холеры) проникая внутрь клетки. Бактерии Bdellovibrio широко распространены в природе (в воде рек, озер, морей, в почвах разных географических зон), но встречаются в сравнительно небольших количествах. Использование Bdellovibrio (предварительно накопленного в лабораторных условиях) для обеззараживания воды в водоемах уже нашло применение. Они являются паразитами многих видов бактерий, но наиболее распространены бделловибрионы, поражающие бактерии семейства Enterobacteriaceae, Pseudomonadaceae, Vibrionaceae. Бактерии рода Bdellovibrio не обладают узкой специфичностью, однако различаются по числу видов бактерий-хозяев. Основным местом жизнедеятельности их являются вода, загрязненная сточными водами, ил, почва [2].

Целью наших исследований являлось выделение культур Bdellovibrio из проб озерного ила, взятых на территории Ульяновской области и изучение особенностей взаимодействия Bdellovibrio с грамотрицательными бактериями водных экосистем.

Исследованию подверглось 30 проб озерного ила, взятых из различных населенных пунктов Ульяновской области: Николаевский район (4 пробы), Павловский район (2 пробы), Тереньгульский район (3 пробы), Инзенский район (1 проба), Барышский район (2 пробы), Кузоватовский район (2 пробы), Сурский район (1 проба), Цильнинский район (2 пробы), Чердаклинский район (2 пробы), Майнинский район (1 проба), Ульяновский район (10 проб). Отбор проб воды из различных участков озера отбирали в стериильные стеклянные бутылки. В качестве бактерий-хозяев использовали штаммы P. aeruginosa, Koxytoca, E.coli, распространение которых также отмечается в водоемах (реки, озера, пруды). Выделить Bdellovibrio можно посевом ила в чашки Петри на плотные питательные среды двухслойным методом. Присутствие их регистрируется по
количеству негативных колоний - зон отсутствия роста на газоне бактерия-хозяина после инкубации при 30°С в течение 48 ч.

Навески образцов были внесены в физиологический раствор в соотношении 1:4 (на каждые 5 г ила брали 20 г воды). Навеску хорошо перемешали с физиологическим раствором и дали отстояться в течение 10 минут. После того, как полученная взвесь отстоялась, ее центрифугировали для удаления крупных частиц и последовательно фильтровали через мембранные фильтры с диаметром пор до 0,22 мкм. Клетки Bdellovibrio настолько мелки, что способны проникать через этот фильтр, тогда как другие бактерии не проходят. Поэтому полученный фильтрат пропускали через фильтр повторно стараясь чтобы на фильтре осталось 1-2 мл раствора. Целью подобных манипуляций является увеличение концентрации бактерий Bdellovibrio в фильтрате [3,4].

1 мл профильтрованной суспензии и 0,1 мл культур бактерий-хозяев (P. aeruginosa, K. oxytoca, E. coli) вносили в пробирку с 2,5 мл предварительно расплавленного 0,7% агара. Пробирку хорошо перемешали вращением в ладонях и разлили по чашкам Петри с 1,5% агаром ровным газоном. После застывания агара, в чашки вторым слоем внесли по 2 мл 1,5% агара без бактериальной взвеси. Чашки помещали в терmostat и культивировали при 30°C+1°C. Данный температурный режим оптимален для роста и развития бактерий рода Bdellovibrio. Температурный оптимум роста бактерий-хозяев также находится в этом пределе. В случае медленного подрастания культур, инкубирование чашек планировалось в течение 4-5 суток. А учет результатов, при помощи просмотра чашек на наличие негативных колоний на газоне культур, осуществлялся каждый день:

- через 24 часа: присутствие негативных колоний не наблюдается не на одной из чашек, культивирование продолжалось еще в течение суток.

- через 48 часов: отмечается присутствие негативных колоний на 5 из 30 пробах ила, бактерии-хозяин - P.aeruginosa; чашки с пробами и газонами других бактерий-хозяев инкубировались следующие 24 часа.

- через 72 часа: присутствие негативных колоний на газонах штаммов E.coli, K.Oxytoca также не наблюдается не на одной из чашек;

Возникшие, после инкубирования в течение двух суток, негативные колонии рассматривали как бделловибрионы. Негативные колонии, присутствующие на газоне P.aeruginosa, «вырезали» и распределяли в стерильной воде. Полученную суспензию выливали на подготовленный газон исследуемой культуры бактерии-хозяина объемом 1 мл (в 3-х кратной повторности). Чашки инкубировали при 30°C с просмотром каждые 10 часов. Учет первых результатов стал возможен через 20 часов культивирования. На всех 5 чашках, отобранных из первой серии опытов (газон бактерии Poaeruginosa), наблюдались негативные колонии. Все чашки были оставлены для последующей инкубации. Учет результатов через следующие 10 часов, позволил отметить разницу в величине образованных колоний. На двух чашках отмечалось увеличение негативных колоний, и, как следствие, уменьшение площади бактериального газона. На трех оставшихся чашках величина колоний осталась прежней. Полного уничтожения всей культуры P. aeruginosa не произошло ни в одном из случаев.

Полученные результаты позволяют заключить, что развитие бактерий Bdellovibrio носит избирательный характер и происходит только на тех штаммах грамотрицательных бактерий, которые в своей структуре содержат ослабленные
клетки. В наших исследованиях наиболее чувствительным к бактериям рода Bdellovibrio оказался штамм бактерии P.aeruginosa, поскольку длительное совместное инкубирование бактерии-хозяина и бактерии-паразита привело к достаточно хорошим результатам- площадь бактериального газона уменьшилась.

Библиография:
К ВОПРОСУ ОПТИМИЗАЦИИ НОРМАТИВОВ ОБЕСПЕЧЕННОСТИ
СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПРЕДПРИЯТИЙ ТЕХНИЧЕСКИМИ
РЕСУРСАМИ

TO THE QUESTION OF OPTIMIZATION OF SECURITY STANDARDS
OF AGRICULTURAL ENTERPRISES AND TECHNICAL RESOURCES

Такун А.П., Ковалёв И.Л.
Институт системных исследований в АПК Национальной академии наук Беларуси
olbosigor@mail.ru

Ключевые слова: нормативы, оборудование, технические ресурсы, техника, агропромышленный комплекс.

В последние годы для повышения технической оснащенности в Республике Беларусь был принят ряд Государственных программ, направленных на поставки аграрным предприятиям современной сельскохозяйственной техники отечественного и зарубежного производства.

За последние 4 года средняя мощность тракторного двигателя в отечественных сельскохозяйственных организациях выросла на 14 л.с. или на 11,4 %. Подобная тенденция наблюдается и по другим видам техники. В тоже время нормативы потребности в сельскохозяйственной технике, действующие в Республике Беларусь, в последний раз пересматривались в 2006 году (Справочник нормативов трудовых и материальных затрат для ведения сельскохозяйственного производства / Нац. акад. наук Беларуси; Институт экономики – Центр аграрной экономики; под ред. В.Г. Гусакова; сост. Я.Н. Бречко, М.Е. Сумонов. – Минск: Бел. наука, 2006.–709 с.). В соответствии с данным справочником норма потребности тракторов на 1000 га пашни составляет 16,8 единиц.

Действующий норматив обеспеченности сельскохозяйственных организаций тракторами в физических единицах значительно искажает реальную обеспеченность хозяйств техникой – она занижена более чем на 20 процентных пунктов. %.

Нормативы потребности в технике должны отвечать следующим основным требованиям:
- соответствовать уровню, состоянию и перспективам развития сельского хозяйства;
- отражать особенности организации и условия производства продукции растениеводства и животноводства во всех основных зонах специализации;
- отвечать качественному уровню оснащения сельских товаропроизводителей техникой и технологиями;
- обеспечивать рациональное использование материально-технических и трудовых ресурсов в целях получения от них наибольшей отдачи, повышения производительности труда, стабильного производства продукции высокого качества, снижения ее себестоимости и ресурсоемкости.

Разработку и актуализацию нормативов обеспеченности предприятий техническими ресурсами необходимо осуществлять на регулярной основе. Заказчиком и координатором работ должно выступать Министерство сельского хозяйства и продовольствия Республики Беларусь, основными разработчиками –
научно-практические центры НАН Беларуси при участии ГУ «Белорусская машиноиспытательная станция», РО «Белагросервис», заводов-изготовителей сельскохозяйственной техники и других заинтересованных организаций и ведомств.

Рекомендуется следующий порядок разработки и оптимизации нормативов обеспеченности предприятий техническими ресурсами:

- анализ исходной информации и обоснование механизированных объёмов производства на расчетный период;
- определение состава комплектов машин и оборудования с учетом условий выполнения годового объема механизированных работ (Объемы работ должны быть выполнены с соблюдением качества и сроков с наименьшими затратами материальных и трудовых ресурсов. В качестве основной исходной информации для определения состава комплектов машин и оборудования принимаются вариантные технологические карты на производство продукции. Обоснование и оптимизация состава комплектов машин и оборудования осуществляется исходя из конкретных условий производства. При наличии нескольких технических средств для механизации одного и того же производственного процесса, одного и того же типоразмера, выбор наиболее рациональных машин и оборудования производится по их экономической эффективности);
- расчет потребности машин и оборудования по технологическим процессам (производится на основании данных по объему работ, производительности машин и времени, в течение которого должна быть выполнена каждая операция);
- расчет (оптимизация) нормативов обеспечения предприятий техническими ресурсами.

При обосновании и расчете нормативов потребности в технике необходимо исходить из качественного уровня технической и технологической базы растениеводства и животноводства. Нормативы должны быть разработаны для современных комплексов машин и комплектов оборудования, обеспечивающих производство сельскохозяйственной продукции по технологиям, адаптированным к агроландшафтным и организационным условиям.

Нормативы потребности в технике необходимо определять исходя из оптимального состава машинно-тракторного парка. Расчетная потребность в машинах общего назначения (тракторы, почвообрабатывающие и др.) относится к общей площади пашни. Нормативы потребности в другой сельскохозяйственной технике относятся к площади посева (посадки) различных культур и определены в расчете на 1000 га.

За нормативную потребность в машинах принимается расчетное число средств механизации, приходящихся на определенную площадь посева (посадки) или другой объём, обеспечивающих выполнение механизированной работы и снижение материальных и трудовых затрат при рациональной организации использования машин, соблюдения агротехнических требований и оптимальных сроков выполнения в условиях рыночных отношений.

Резюмируя проведенные исследования по оптимизации нормативов обеспеченности сельскохозяйственных предприятий техническими ресурсами мы можем сделать следующие выводы:

1. Разработку и актуализацию нормативов обеспеченности предприятий техническими ресурсами необходимо осуществлять на регулярной основе. Заказчиком и координатором работ должно выступать Министерство сельского хозяйства и продовольствия Республики Беларусь, основными разработчиками –
научно-практические центры НАН Беларуси при участии ГУ «Белорусская машиноиспытательная станция», РО «Белагросервис», заводов-изготовителей сельскохозяйственной техники и других заинтересованных организаций. Рекомендуется следующий порядок разработки и актуализации нормативов обеспеченности предприятий техническими ресурсами: 1) анализ исходной информации и обоснование механизированных объемов производства на расчетный период; 2) определение состава комплектов машин и оборудования с учетом условий выполнения годового объема механизированных работ; 3) расчет потребности машин и оборудования по технологическим процессам; 4) расчет (оптимизация) нормативов обеспечённости предприятий техническими ресурсами.

2. Проведенные исследования позволили определить современную нормативную потребность сельскохозяйственных организаций Беларуси в тракторах, которая оказалась равной 16,1 условного эталонного трактора на 1000 га пашни. Для лучшего понимания и упрощения работы с данными, нормативы обеспечеченности предприятий техническими ресурсами мы определили не только в виде эталонных единиц, но и в физическом измерении. При этом в отношении тракторной техники рассчитано два вида таких нормативов: количество физических тракторов в расчете на 1000 га пашни – 11 шт.; и мощность тракторных двигателей в расчете на 1000 га пашни – 1850 лошадиных сил.

Библиография:
РАСЧЕТ КАТЕГОРИЙ СЛОЖНОСТИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА МАШИН И ОБОРУДОВАНИЯ С ПРИМЕНЕНИЕМ МНОГОФАКТОРНОГО КОРРЕЛЯЦИОННОГО АНАЛИЗА

Ковалёв Л.И.
Белорусский государственный аграрный технический университет
Ковалёв И.Л.
Институт системных исследований в АПК Национальной академии наук Беларуси
olbosigor@mail.ru

Ключевые слова: корреляционный анализ, статистические методы, животноводство, нормативы, оборудование, технический сервис, техническое обслуживание и ремонт.

Степень сложности ремонта агрегата, машины, их ремонтные особенности оцениваются категориями сложности ремонта. Категории сложности ремонта оборудования зависят от его конструктивных и технологических особенностей.

Для планирования, учета ремонтных работ и расчетов наряду с категорией сложности ремонта вводится понятие «ремонтная единица». Значение категорий сложности ремонта и количество ремонт-нных единиц для любого агрегата совпадают. Количество установленных ремонтных единиц позволяет составить суждение об объеме работ по ремонту оборудования в целом на предприятии и т.д.

В промышленности трудоемкость одной ремонтной единицы была принята в конце 50-х гг. и равнялась 35 часам, действует и по настоящее время.

При обосновании условной единицы сложности на техническое обслуживание и ремонт машин и оборудования в животноводстве сделаны выводы, что независимо от того, какая трудоемкость будет присвоена одной условной единице – 27, 35 или 50 ч – это не повлияет на определение категории сложности, а только будет изменяться численное значение условных единиц по определяемой машине. Главная наша задача – определить категорию сложности так, чтобы она отражала объективную трудоемкость технического обслуживания и ремонта животноводческой техники.

Например, не имеет значения, какое количество условных единиц будет присвоено доильной установке АДМ-8 на 200 голов – 9, 13 или 17, важно, чтобы во всех случаях принимаемые значения отражали годовую трудоемкость 460 ч на техническое обслуживание и ремонт данного вида оборудования.

Целесообразно принять единую условную единицу 27 ч на техническое обслуживание и ремонт машин и оборудования в животноводстве и определять категорию сложности технического обслуживания и ремонт машин и оборудования в животноводстве необходимо по техническим параметрам эмпирическим методом с подбором коэффициентов к каждому параметру.

Для определения категории сложности технического обслуживания и ремонта в животноводстве необходимо все животноводческое оборудование и
машины распределить на группы технологического назначения. После этого по каждой группе машин проводится анализ по конструктивным особенностям и определяется базовая машина для определения категории сложности. Если в группе машины по своей конструкции отличаются, то их нужно формировать на подгруппы по конструктивному устройству и также для каждой подгруппы принять базовую машину. Это позволяет более точно определить категорию сложности не только на существующие машины, но и на вновь проектируемые.

Исходными данными для определения категорий сложности технического обслуживания и ремонта машин и оборудования в животноводстве являются параметры и технические характеристики, приведенные в паспорте оборудования. Поэтому категория сложности технического обслуживания и ремонта животноводческой техники является величиной постоянной. Она может изменяться лишь в результате совершенствования или модернизации оборудования.

Применение математического программирования при решении задач комплексной механизации и автоматизации всех процессов, а также экономических задач позволяет найти из числа возможных решений наилучший, оптимальный вариант, при котором в развитии производства достигается максимальный эффект за счет более целесообразного использования имеющихся производственных ресурсов.

При определении числовых коэффициентов для зависимостей, влияющих на категорию сложности технического обслуживания и ремонта машин и оборудования в животноводстве, использован метод многофакторного корреляционного анализа. Преимущество математико-статистических методов состоит в том, что они позволяют рассчитать, в какой степени каждый фактор в отдельности влияет на категорию сложности технического обслуживания и ремонта исследуемой зависимости. Кроме того, методы корреляционного анализа позволяют учесть не только влияние каждого отдельного фактора, но и выявить результаты совместного действия группы изучаемых факторов.

Библиография:
МИКРОСТРОЕНИЕ ГОРНО-ЛУГОВЫХ ДЕРНОВЫХ И ГОРНО-ЛЕСНЫХ БУРЫХ ПОЧВ ПРИ РАЗНОЙ СТЕПЕНИ СМЫТОСТИ
MICROSTRUCTURE MOUNTAIN MEADOW TURF AND MOUNTAIN-FOREST BROWN SOILS WITH DIFFERENT DEGREES OF EROSION

Алиев З.Г., Мамедов В.А.
Институт эрозии и орошения НАН, Азербайджан
zakirakademik@mail.ru

Ключевые слова: эрозия, почвы, степень смытости, микроморфология почв.

За последние годы микроморфология проникла в область исследования эродированных почв. При ее помощи решаются вопросы образования эрозионных осадков, процессы эрозии вообще. Определение микросложения служит одним из способов установления податливости почв к эрозии [1].

Анализ опубликованных работ показывает достаточную изученность микроморфологии почв разного генезиса и почвообразующих пород. Но микроморфологическое строение эродированных почв изучено недостаточно [1-4], а в горных условиях слабо. На основании микроморфологических исследований [2] установлено, что пахотные горизонты среднесмытых серых лесных почв по сравнению с несмытыми обогащены подвижными веществами, отмечается уменьшение микроагрегированности и плотности. Ориентированная глина в таких случаях в пахотном горизонте находится в раздробленном состоянии.

Целью нашего исследования было изучить микростроение горно-луговых дерновых и горно-лесных бурых почв и их смытых разностей Большого Кавказа Азербайджана.

Микроморфологические исследования горно-луговых дерновых почв, в том числе разной степени смытости выявили следующее. Несмытые почвы характеризуются высокой гумусированностью, рыхлым микросложением, преобладанием межагрегатных пор, в основном, первого порядка. Плазма аккумулятивного горизонта гумусово-глинистая, в нижних горизонтах почвы – карбонатно-глинистые. Вниз по профилю гумусность, агрегатность и порозность резко уменьшаются.

Из-за смыва аккумулятивного горизонтов сильносмытых почв, окраска верхних горизонтов в шлифах более светлая, чем у несмытых почв. Микроагрегаты выражены слабо. Отмечаются очень редкие поры трещиноватой формы в нижних горизонтах. Видна миграция железа по трещинам. Увеличивается скелетность, резко уменьшается содержание тонкосперсных цементирующих веществ.

Микростроение горно-лесных бурых почв и их эродированных вариантов показало, что в не смытых почвах верхний (4-17 см) горизонт в шлифах имеет темно-серую окраску с буроватым оттенком. Хорошо выражены признаки деятельности мезофауны. В хорошо агрегированной почвенной массе преобладает высокосперсный буровоокрашенный гумус. Микроагрегаты первого и второго порядка характеризуются значительной степенью упакованности. Плазма верхнего горизонта гумусово-глинистая. Начиная с иллювиального горизонта (В1), характерны накопление железа и оглиненность. В более глубоком 114-128 см горизонте видна оптически ориентированная глина натечной формы.
Возможно, это связано с боковыми внутрипочвенными потоками влаги и тонких глинистых супсэзов.

В среднесмытой почве начинающая с верхнего (0-15 см) горизонта, наблюдается примесь материала иллювиального генезиса. В сильносмытых разностях гумусированность слабая, микроагрегаты выражены неясно, сложение плотное, уменьшается видимая порозность. Характерной особенностью этого разреза является отсутствие аккумулятивного по гумусу горизонта.

Проведенными исследованиями установлено, что в верхних горизонтах смытых разностей по сравнению с несмытыми почвами резко снижаются гумусированность, микроагрегированность, порозность, ожелезненность, что является причиной низкой степени оструктуренности верхнего слоя почвы и ухудшения водопроницаемости. При диагностике степени смытости почв и при установлении характера эрозионных процессов, протекающих в них, можно в качестве дополнительного показателя использовать микроморфологический анализ почв.

Библиография:
2. Родионов В.С., Градусов Б.П. – Микроморфология и химико-минералогический состав фракций меньше 0,001 мм серых лесных несмытых и смытых почв правобережья р. Оки «Научные доклады высшей школы биол, наук» №5, 1967, с. 152-159.
3. Ромашкевич А.И. – Микростроение и микроагрегированность почв в связи со смывом о образованием наносов. «Почвоведение», 1962, №10, с. 54-61.
УЛУЧШЕНИЕ ЭРОДИРОВАННЫХ ПОЧВ ПАСТБИЩ АЗЕРБАЙДЖАНА
IMPROVING OF PASTURES ON ERODED SOILS IN AZERBAIJAN

Алиев З.Г., Гаджиев Т.А.
Институт эрозии и орошения НАН, Азербайджан
zakirakademik@mail.ru

Ключевые слова: эрозия, почвы, пастбища, Азербайджан.

Территория Азербайджанской Республики расположена в восточной части Закавказья, сюда входят области Большого и Малого Кавказа, Талышская зона, Куринская впадина. Общая площадь республики составляет 86,6 тыс. км2 около 40% земельной площади составляют равнины, остальные 60% предгорные и горные территории. Климатические условия республики разнообразны являясь горной страной, республика в то же время обладает обширными низменностями, долинами и в связи с разнообразием поверхности рельефа имеет и разнообразный климат. От вторжения холодных воздушных масс с севера республику защищает главный Кавказский хребет. В зависимости от высоты над уровнем моря климатические условия варьируют. С поднятием в горы средняя температура воздуха понижается. Из 11 под типов климата, установленных на Земном Шаре, у нас встречаются 9 под типов климата, отсутствуют климат саванн и климат тропических лесов.

Характерными типами почв являются горно-луговые дерновые, далее горно-лесные почвы, в предгорьях и в предгорных равнинах распространены серо-коричневые, в аридной зоне серо-бурые, в Талышской зоне желтоземы.

Несмотря на небольшую площадь республика обладает разнообразными природными условиями и богатыми естественными ресурсами. Одним из природных ресурсов в Азербайджане являются пастбища. Площадь пастбищ составляет в республике 22,3% из общей площади. Летние пастбища составляют 621 тыс. гектар, зимние 1,5 миллиона гектар, приселльские выгоны и сенокосы составляют около 1 миллиона гектар. Известно, что Азербайджанская Республика издревле отличается отраслью животноводства. Наш край с богатыми естественными выгонами и пастбищами, расположенными в альпийской зонах, является природным ресурсом. Однако в силу различных обстоятельств, в том числе и эрозии почвы, эти природные кормовые ресурсы теряют своё потенциальное плодородие. Одним из таких обстоятельств является эрозия почвы. Эрозия – это разрушение, разъедание, как геологический термин-это разрушение верхнего плодородного слоя почвы под воздействие ветра и воды. Верхний слой земной коры в результате, происходящих в природе процессов, подвергается различным изменениям. Этот процесс может протекать как нормальное явление природы, также интенсивно в результате антропогенной нагрузки. В любом из 2-х случаев верхний слой почвы подвергается смыву. Независимо от типа эрозии уносится наиболее развитый плодородный верхний акумулятивный горизонт. Вместе с водными потоками и твердой фазой почв уносятся питательные вещества с мелкодисперсной фракцией и в зависимости от степени смывости, ущерб наносимый эрозией бывает различным. Следует также отметить, что у нас наряду с водной эрозией проявляется ветровой эрозии – дефляции – также велико. Ветровая эрозия интенсивно проявляется в аридной
зоне, где сухой климат, усиленный ветровой режим, незначительность атмосферных осадков способствуют деградации растительного покрова. Интенсивность развития ветровой эрозии по сравнению с водной невелика. Однако ущерб, нанесенный ветровой эрозией сельскому хозяйству колоссальный. Ветровая эрозия с одной стороны способствует выдуванию почвы, с другой стороны скоплению частиц в виде холма, движущиеся пески засыпают овощебахчевые культуры, дороги, строительные участки, шквалы ветров срывают крыши с домов.

Природные кормовые угодья расположенные на эродированных склонах имеют низкую продуктивность. Зимние пастбища засушливых земель не обеспечивают животноводство количественным и качественным кормом [1; 2; 3]

Приемы улучшения естественных сенокосов и пастбищ разделяют на 2 основные группы: поверхностные и коренное улучшение. Под поверхностными улучшениями понимаются мероприятия по содержанию сенокосов и пастбищ в культурном состоянии и повышения их урожайности без нарушения естественной дернины. Система поверхностного улучшения естественных сенокосов и пастбищ заключается в том, чтобы улучшением водного, воздушного и пищевого режимов, уходом за травостоем, наиболее длительное время удерживать кормовые угодья в состоянии хозяйственной ценности. Поверхностное улучшение целесообразно на лугах, где в травостое сохранилось 20-25% ценных кормовых трав. На сенокосах и пастбищах с худшим травостоем поверхностное улучшение не дает должного эффекта, и следует проводить коренное.

Библиография:
3. Г.А. Гияси – Улучшение эродированных почв при помощи бобовых трав.// Баку, 2012 г.
ВЛИЯНИЕ СПИРТОВОЙ БАРДЫ НА АГРОХИМИЧЕСКУЮ ХАРАКТЕРИСТИКУ ПОЧВЫ
INFLUENCE OF ALCOHOL STILLAGE ON AGROCHEMICAL CHARACTERISTICS OF SOIL

Павловская Н.Е., Бородин Д.Б.
ФГБОУ ВО «Орловский государственный аграрный университет», г. Орел, Россия
bioogau@mail.ru

Ключевые слова: отходы спиртового производства, удобрение, почва, плодородие.

При производстве кристаллического сахара из сахарной свеклы, помимо сахара, получают побочные продукты, - свекловичный жом и мелассу. Ферментацией последней получают этиловый спирт, аскорбиновую кислоту, а также ряд других продуктов. После получения требуемого продукта, остается барда светло-коричневого цвета с приятным запахом зерна. Выход - около 13 литров на каждый литр спирта [3].

Содержание сухого вещества изначально не превышает 6%, однако технологии производства кормовых добавок требуют более концентрированного продукта, и в настоящее время большинство производителей проводит дегидратацию барды с повышением концентрации сухих веществ до уровня 35-40% и выше [5].

В некоторых странах Азии и Латинской Америки первичную барду могут использовать в качестве удобрения путем прямого внесения в почву. Однако такая практика в последнее время ограничивается со стороны государственных органов, в связи с неизученностью всех аспектов влияния (в том числе микробиологического) барды на почву, грунтовые воды и сами растения [2].

С одной стороны, барда - это отходы, вызывающие загрязнение окружающей среды. Поэтому запрещается сбрасывать барду в водоёмы или в канализацию без предварительной переработки (закон РФ «О государственном регулировании производства и оборота этилового спирта, алкогольной и спиртосодержащей продукции», ст. 8, п. 5; в других странах есть аналогичные нормы). С другой стороны, барда, благодаря содержанию клетчатки, углеводов, белка и микроэлементов, является вторичным сырьевым ресурсом, она может служить сырьём для производства корма для животных и удобрений [5].

В настоящее время на большинстве спиртовых заводов мира барду тем или иным образом перерабатывают, в основном на корма. Иногда её используют в качестве корма в не переработанном виде, но это неудобно, так как барда очень недолго хранится, а перевозить её невыгодно [1].

Одним из факторов, ограничивающих широкое применения барды, является её подверженность микробиологической атаке. Это связано с её быстрой порой из-за развития микрофлоры, начала маслянокислого брожения, плесневения, что требует внедрения биоцидов, которые, в свою очередь, крайне нежелательный компонент при производстве кормов для животных (опасность проникновения в молоко, снижение иммунитета животных и проч.).

Объектом исследования служили 5 почвенных образцов с различным временем внесения и количеством барды, один контрольный образец почвы и
жидкая барда. Образец №1: почва с бардой, внесенной 7 дней назад в количестве 30 м³/га. Образец №2: почва с бардой, внесенной весной. Образец №3: почва со свежей внесенной бардой. Образец №4: почва с бардой внесенной поздней осенью. Образец №5: почва, контроль. Образец №6: почва с бардой, внесенной 7 дней назад в количестве 90 м³/га. Образец №7: жидкая барда.

Анализ почвы показал, что в образцах №1, №2 содержание азота 1,06-1,08 %; массовая доля калия – 0,1%, массовая доля фосфора -0,06%, pH в образце №1 больше, чем в образце №2 на 0,27, т.е. почва менее кислая. Влажность в образце №2 в два раза выше №1. В образцах №3 и №4 содержание питательных элементов мало отличается от первых двух образцов с небольшим преимуществом по азоту. Влажность несколько выше в образце №4. pH менее кислый, чем в первом и втором образце.

Контрольный вариант почвы без дополнительных внесений барды содержит незначительно меньше азота, не отличается по содержанию калия и фосфора. Влажность близка к образцу №4, pH на уровне 3 и 4 образцов.

В образце почвы с мелассой, в отличие от 1-го образца, выше влажность и почва менее кислая. В образцах бары №7 показатели доли азота, калия превышают контрольные образцы в 1,5-2 раза, а содержание фосфора в 4 раза. Влажность составляет 90%.

Таким образом, результаты исследований показывают, что барда независимо от сроков внесения обогащает почву питательными веществами, увеличивает влажность и снижает кислотность.

Отходы спиртового производства, содержащие необходимые для растений минеральные вещества, можно использовать при выращивании различных сельскохозяйственных культур. Таким образом, на основе анализа ряда показателей, таких как кислотность почвы, агрохимический состав, влажность выявлено, что оптимальной дозой внесения фильтрата спиртовой барды является 90 м³/га. Применение фильтрата спиртовой барды решает проблему утилизации отходов спиртового производства [4].

Библиография:

THE NEW WAY OF THE IRRIGATION WATER QUALITY AMELIORATION IN THE INHULETS’KA IRRIGATION SYSTEM BY USING WATER FEED FROM THE KARACHUNIVS’KE RESERVOIR

Likhovid P.V.
Kherson State Agrarian University, Ukraine
pavel.likhovid@gmail.com

Key words: Kelly's ratio, permeability index, sodium adsorption ratio, sodium percentage, total dissolved salts content, water quality for irrigation.

The aim of the paper is study of the changes in quality of the irrigation water of the Inhulets'ka irrigation system under the impact of taken in 2011 measures for its amelioration. These measures consist in constant water feed of the polluted river Inhulets, as the source of the irrigation water, with water from the Karachunivs'ke reservoir during the irrigation period in volume of 130 millions of cubic meters. In such way polluted river water is mixed up with clean water of the reservoir. This provides amelioration of the quality of the Inhulets'ka irrigation system water. To assess effectiveness of this way of the amelioration laboratorial analyses of the irrigation water by agronomical criteria with accordance to state and international standards were carried out. The results of the analyses show significant improvement of the irrigation water quality during its amelioration. So, the content of total dissolved salts in the irrigation water decreased from 208 – 2280 mg/L in pre-amelioration period to 1458 – 1673 mg/L after amelioration; accordingly, Kelly's ratio decreased from 0.87 – 1.44 to 0.88 – 1.17; sodium adsorption ratio values decreased from 5.4 – 7.9 to 4.3 – 5.8; permeability index increased from 0.87 – 1.06 to 1.18 – 1.29; sodium percentage decreased from 46.4 – 58.9 to 47.2 – 53.9; pH of the irrigation water stabilized on 8.24 – 8.48 in comparison to 7.31 – 8.72. The results of the irrigation water analyses allow concluding that system of water feed from the Karachunivs’ke reservoir is an effective way of the amelioration of the Inhulets'ka irrigation system water.

References:
THE INFLUENCE OF SPONTANEOUS HYBRIDIZATION IN THE GENUS ULMUS L. THE COMPLEX ON THE QUALITY OF THE TREES IN SPARSELY WOODED REGIONS OF RUSSIA

Podkovyrov I.Y.
Volgograd State Agrarian University, Volgograd, Russia
agrosad@inbox.ru

Key words: elm, hybridization, protective forest plantations, the quality of woody vegetation, soil fertility.

The success and growth of protective tree planting forest plantations in the arid region is determined by the selection of tree species used [1]. About 20% of natural forests in floodplains and gullies include species of the genera complex Ulmus L. [2]. More than 70% of forest belts in the Lower Volga contain part of Ulmus pumila L. [3, 4]. Studies have shown low durability of the species and the poor condition of the trees [5, 6]. This adversely affects the quality and performance of landing the role of reclamation.

The aim was to study the spontaneous hybridization Ulmus L. arid region and a comprehensive assessment of hybrids in natural and artificial stands.

Morphological analysis was performed by measuring biometric parameters. The results were processed by statistical methods: samples, correlations, principal component analysis, clustering. The study of growth made on the trial plots and model trees. Drought and salt tolerance was determined in pot experiments [7].

The test objects were the oldest forest stands in different natural zones of the arid region. In the black-earth steppes - Nekhayevsky District; in the desert - Kamyshin, Bykovsky and Oktyabrsky district of the Volgograd region; in semi-desert - Bogdinsko-Baskunchaksky Reserve (Astrakhan region).

Introduction of Ulmus pumila L. in the Lower Volga region has led to the creation of spontaneous hybrids Ulmus carpinifolia Rup. ex Suchov. Hybrids are of different morphological features. A study of 14 biometric parameters of fruits and leaves the method of principal components showed that more fully characterize the plant length and width of the lionfish, length, width and distance from the base to the widest part of the sheet. It is also marked by a high level of volatility.

Elm hybrids differs significant variability of physiological parameters. By the properties of the parent tends to mean, and sometimes surpasses it. The most droughts have a predominance of hybrids with traits Ulmus pumila L. With a slight salinity (0.1%) hybrids are superior to the parent species, but at a highly saline (0.2%) reduced their salt tolerance. Frost hybrids much (can withstand temperatures up to -19.5°C soil), but slightly inferior Ulmus carpinifolia. They are susceptible to Ceratocistis ulmi. An integral component of hybrids rather high (3.5 points), so they are very promising for afforestation.

Hybrids bloom before the parental species. They bloom begins in late March - early April, when the sum of positive temperatures up to 130 - 140 0C. Dirt germination of seeds from hybrid plants below and the seed weight is higher, it is necessary to take into account.

Hybrid plants have the crown of varying thickness. For trees with a predominance of signs of Ulmus pumila L. characteristic delicate crone (71,2%), and for hybrids group Ulmus carpinifolia - dense (74,6%). In the worst site conditions (saline soils) inventory
indices are down. Hybrid plants are much higher than Ulmus pumila L. in height (19.6–37.3%) and diameter (35.6–38.6%) and had a very good condition (4.3–4.4 points). They feature single-barrel, oblique and spreading crown of lace and are therefore suitable for the creation of forest belts. The growth of these plants reaches more than 1.5 m, whereby the arched branches bend and the crown becomes drooping form (found in 30.8% of the plants). The area of the crown projection in this group of hybrids significant – 10.8 m². A number of hybrids in this group form a compact single-barrel conical crown.

Hybrid plants with a predominance of signs of Ulmus carpinifolia different equilateral, spreading, rounded crown of dense predominantly 1 barrel. The projection crown them is 7.2 m² and a height of 3.0 m. Hybrids of this group can be recommended for the creation of forest belts dense structure. It should be noted that with age the crown habit of changing, but the main skeletal branches are laid in the early development that determines the further formation of the size of a tree.

Spontaneous hybrids of Ulmus pumila x carpinifolia found in lane, and the massive plantations in the form of individual trees and groups of a few dozen copies. They stand out because of their markedly increased, and the absence of shrinkage. Under the conditions of light-brown soils hybrids height varies depending on the site conditions. The best growing conditions (I group of fertility), they reach a height 10.2–10.3 m, and in a worst (III group of fertility), their average height is 8.0–8.3 m. Hybrids Ulmus pumila x carpinifolia diameter the deteriorating forest conditions is reduced. Hybrids Ulmus carpinifolia x pumila is an inverse relationship. Against the background of decreasing the height of the deteriorating soil conditions is a trunk diameter increases. In terms of brown soil hybrid elms reach at height (6.9–8.8 m).

Status hybrids with a decrease in soil fertility are improved, but remain fairly good. Even at the age of 46 years, it is still much better than the seed and coppice Ulmus pumila.

Clonal progeny of the hybrids, as well as the seed does not differ in growth. Plants have a satisfactory condition 3.1 – 3.5 points. It is better to have a predominance of hybrids with traits Ulmus pumila. Preservation of plants in plantations is 44.2% (in U. pumila x carpinifolia) and 53.5% (at the U. carpinifolia x pumila). The low percentage is due to the preservation of soil salinity and lack of cultural care.

Studies have shown the prospects of application in the forestation of the region hybrids Ulmus L. Spontaneous hybrids are of good growth and relatively high durability even in soils of group III fertility. Age hybrid plants reached 40 years. No signs of drying show that the trees are viable and durable. The use of hybrid plants Ulmus L. will increase the viability and quality of forest plantations in the arid region.

References:
2. Маттис, Г.Я. О повышении эффективности ильмовых защитных насаждений в сухостепной и полупустынной зонах / Г.Я. Маттис, И.Ю. Подковыров. // Вестник Российской академии сельскохозяйственных наук, № 1, 2005 г. – С. 39–41.
5. Подковыров И. Ю. Повышение эффективности ильмовых лесных насаждений в Нижнем Поволжье на основе эколого-биологической оценки видов, гибридов и форм: автореф. дис. ... канд. с.-х. наук. Волгоград, 2002. 20 с.
MULTIFUNCTIONAL ROLE OF LANDSCAPING PLANTS IN AN URBANIZING

Podkovyrova G.V.
Volgograd State Agrarian University, Volgograd, Russia
lonicera1978@yandex.ru

Key words: landscaping, condition of forests, types of plantings, species richness, reclamation role.

In areas with low forest cover and poor species composition of woody flora in natural landscaping plantings are of particular ecological and social importance [1, 2]. Enhancing the multifunctional role of green space in urban landscapes is an important event aimed at creating comfortable environment [3, 4, 5].

The objective was to study the growth and condition of green plantings of the Volgograd agglomeration and to identify their multifunctional role for the formation of adapted crop in terms of urbanozem.

The research objects were landscaping plantings general and restricted on sites of educational institutions; on-site medical facilities; the Boulevard on Kirov; block planting. They are located in Sovetsky, Kirovsky and Central districts of the conurbation of the city of Volgograd. For the purpose of implementation of the programmed of studies applied accepted methodologies bookmarks stationary experiments. Inventory and assessment of the condition of green plantings was carried out using conventional methods. The soil research was conducted in laboratory conditions.

The study of forest indices the most common species in different soil and hydrological conditions has shown that by age 30, these species reach the limit of height - 9,0-14,0 m. the Lowest indices of height and diameter were representatives of the Rose family (Rosaceae Juss.). In green plantations of tree species can reach their maximum productivity only under conditions of irrigation, where fully manifested their multifunctional role. In dry conditions the quality class of stands of Ulmus pumila III - IV, Robinia pseudoacacia and Fraxinus pensylvanica III.

In net the composition of plantations is observed deterioration of growth conditions and reducing the aesthetic appeal of the plantings and forest indices of woody species. In mixed plantations aged 10-15 years is formed vertical density. By this age, trees are observed the best indicators of habitués, smooth trunk and well branched crown, starting with the height of 2,0-2,5 m.

Related rocks (ordinary apricot, mountain ash, small-leaved lime and hawthorn) form the second tier of the stands. The height of their crowns compared with the main breeds 27,0 – 40,7 per cent. Taxation characteristics of plantations aged more than 30 years at all sites recreational use, indicates the need for their reconstruction.

To increase the stability and durability of green plantations in arid regions is necessary to combine inventory indices of plants with other qualities: state, class of recreation digression, the ratio of different types of landings. As a result of inventory objects landscaping identified an insufficient number of ornamental tree species, the absence of coniferous shrubs and a small amount of flowering and plants with decorative leaves. Introduction to planting new species and increasing the number of missing groups of decorative plants allowed changing the structure of green plantations.
At the heart of the renovation was the expansion of the range of trees and shrubs. The index of species richness of Margalef showed that biologically diverse areas of the Clinic № 1.

The index of species dominance Berger–Parker indicates the need for activities for the enrichment of the species composition of plantations. The enrichment of the species composition of a community, respectively, resulting in the improvement of sanitary-hygienic and aesthetic functions (correlation coefficient 0,41-0,73).

For the purpose of forming an aesthetically attractive plantings in the arid region, identified and recommended woody plants of the four groups, the use of which contributes to the increase of recreational capacity of landscape during the whole year. Special attention should be paid to evergreen woody plants with ornamental foliage that are attractive in winter. It is established that a group planting of ornamental shrubs in the investigated facilities landscaping decoration reached its maximum in 3-4 times before (ages 3-5 years) compared to pure wood groups and monocultures, due to the acceleration of the formation of habitués stands.

Landscaping plantings Volgograd agglomeration is mainly represented by 80% of old-growth trees and shrubs. Improving landscape and aesthetic attractiveness of landscaping is achieved by changing the age structure and establishment of young plantings.

Landscaped areas and carry out a number of important city-forming functions and is the basis of ecological frame of urbolandscape. The role of plantations in open and closed types of the urban landscape is by changing the temperature on site during the day. It is noted the same trend in the temperature regime of the soil, under the canopy of the forest, and lawn. However, the effectiveness of tree crown covers above 10 %. Within plant communities, plants are able to regulate the temperature in the summer period, somewhat reducing it in hot weather, and bringing to favorable. This property can be considered adaptive capacity of plant communities.

Daily and seasonal dynamics of visits to the plantations of the population has a direct relationship with the extent of their ameliorative effect. It is the tendency of change of the temperature regime of the soil, under the canopy of the forest, and lawn. The effectiveness of the influence of tree canopy on the temperature regime is of the adjacent areas above 10 %. It is correlation between the number of visitors to the plantations and the number of days with comfortable weather conditions. It is the highest (r=0,83) on sites with semi-open spatial structure of plantations, compared with less undeveloped and open area (r=0,52). To improve ameliorative role in plants it is advisable to plant related species (Norway maple, horse chestnut, small-leaved lime, etc.) and generate the structure of spaces the spatial distribution of different types of plantings.

References:

2. Семенютина, А.В. Особенности реконструкции рекреационно-озеленительных насаждений урбанизированных территорий Нижнего Поволжья [Текст] / А.В.

LAND, HUMAN AND CULTURE OF SUSTAINABLE THOUGHT: MODELS TO ADDRESS DESERTIFICATION AND RECLAIM AGRICULTURAL LAND AND TO TAKE ADVANTAGE OF IT

Safer Karima
University Abou Bakr Belkaid, Tlemcen, Algeria
karimila@hotmail.fr

Key words: earth, desertification, agricultural land reclamation.

The environment is everything that surrounds the human assets. The air you breathe and the water we drink and the land they live on and farmed, and its surroundings from living organisms or inanimate things are elements of the environment in which they live, a framework that is practiced in which the various activities, the first thing that must be to be achieved in order to preserve human life to understand the true understanding of the environment in all its elements and its components and mutual interactions, then that is a serious collective action to protect and improve and to seek his living and to exercise its relations without damaging or spoiling. The development on the exploitation of environmental resources and human potential, including scientific and technological achievements and philosophy in order to achieve a number of the most important objectives of human needs and improve and develop the quality of human life. The concept of sustainable development, a development that meets the needs of the present without compromising the ability of future generations to meet their needs, has resulted in the concept of sustainable development to the emergence of new development philosophy take into account the limited natural environmental resources and the limits of the earth’s ability to withstand the stress of attrition on the one hand, pollution and degradation, as well as from hand thinking in the exploitation of natural resources now and think about the sustainability of generations Kadmh.omn during this presentation we will look at: What is man’s relationship to the environment? What are the most important measures to be the man to follow to ensure the protection of the environment and sustainability? With addressing the experiences around the world responded to the phenomenon of desertification through experiments to reclaim Indicate with how to benefit from these experiences.
ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ПЛАВЛЕНЫХ СЫРОВ С ИСПОЛЬЗОВАНИЕМ РАСТИТЕЛЬНОГО СЫРЬЯ
TECHNOLOGY OF PRODUCTION OF PROCESSED CHEESE WITH VEGETABLE RAW MATERIALS

Абаев В.Т., Кокоева А.Т.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: сыры, технология производства, растительное сырье.

Одной из главных задач, является обеспечение качественными молочными продуктами население страны, а это зависит и от производителей молока и от перерабатывающей промышленности.

Объем отечественного производства сыров, как и молочной продукции в целом, за последние годы увеличился. Однако высокая себестоимость качественных сыров обуславливает целесообразность производства продукта, более доступного широким слоям населения. Одним из таких продуктов являются плавленые сыры, различные виды которых регулярно употребляют около 38% российских семей.

В последнее время начинает развиваться направление, связанное с использованием в производстве плавленых сыров и плавленых сырных продуктов сырья немолочного происхождения (ягоды, фрукты, продукты морских промыслов, дикорастущее растительное сырье, мед и другие). Хорошим резервом сырья для производства плавленого сыра являются растения, которые служат источником витаминов, органических кислот, моно- и дисахаридов, пектиновых веществ, минеральных и других биологически активных соединений.

Целью настоящей работы являлось разработка и исследование технологии производства плавленых сыров с добавлением растительного сырья (черемши), и создание на этой основе новых видов сыров. Была разработана рецептура и технология производства плавленого сыра с добавлением растительного сырья, в частности черемши.

Было изучено содержание основных пищевых веществ в растительном сырье (черемше). Для проведения работы использовали плавленый сыр «Сливочный».

Были проведены исследования химического состава плавленого сыра и дана характеристика его биологической эффективности, пищевой и энергетической ценности.

Технологический процесс производства плавленого сыра с добавлением растительного сырья не отличался от традиционного. Лишь при плавлении сырной массы вносили растительную смесь черемши в количестве 30%.

Измельчённый сыр и другие виды сыры отвечали в соответствии с рецептурой. Массу сырья, необходимого для выработки плавленого сыра, рассчитывали исходя из норм расхода сыра на 1 тонну готового продукта и химического состава сырья. Компоненты поместили в емкость, добавив соли-плативители. В качестве солей-плавителей использовали смесь фосфатов.

Растительное сырье (черемшу) обмывали теплой водой и затем измельчали, пропуская через волчок с диаметром отверстий 3-4 мм. Измельченную черемшу заливали сливочным маслом и подогревали до температуры 95-100°C. Охлаждали
до температуры 75-80 °C и при этой температуре выдерживали 2 ч. По своему составу она была практически идентичной составу соответствующего растительного сыра.

При плавлении смесь компонентов непрерывно перемешивали мешалкой сначала на малой скорости, а затем скорость увеличивали. Для получения более однородной консистенции (без пузырьков) сырые плавили под вакуумом. При этом из сырной массы удаляются летучие компоненты и воздух, что способствует снижению интенсивности запаха и к ослаблению окислительных процессов во время хранения плавленого сыра. Стойкость продукта при этом случае повышается. Температура плавления была 90–10–12 минут. Затем вносили бактериальную закваску. Подготовленную смесь черемши добавляли в смесь в конце плавления.

После плавления сырную массу фасовали в горячем виде 60-75°C на расфасовочно - укупорочных автоматах в коробочки по 100 г. Продукт охлаждали в помещениях с температурой 8-10°C.

Плавленые сыры характеризуются определенными, свойственными каждому отдельному виду органолептическими показателями, а также должны отвечать требованиям стандарта по физико-химическим показателям.

По вкусу и запаху плавленый сыр «Пикантный» отличался от сыра «Сливочный» чесночным вкусом, что связано с добавлением черемши. Также цвет был слегка зеленоватым оттенком у плавленого сыра «Пикантный».

В выработанном сыре «Пикантный» содержание белков, жиров и углеводов было меньше относительно плавленого сыра «Сливочный» на 7,3%; 6,5% и 11,1% соответственно. Содержание влаги было больше на 6,4%. Был ниже показатель и по энергетической ценности – на 12,6 ккал.

Все сыры по аминокислотному составу являются биологически полноценными продуктами. Помимо всего вышеперечисленного, польза плавленого сыра заключается и в наличии жирных насыщенных кислот, которые несут в себе немало целебных качеств. Наряду с положительными свойствами довольно часто можно столкнуться и с возможным вредом плавленого сыра. Это связано с высоким содержанием натрия, что делает данный продукт нежелательным для употребления в пищу людям с гипертонией и другими заболеваниями сердца и сосудов.

На основании результатов собственных исследований можно сделать следующие выводы:

Нами была разработана рецептура и технология производства плавленого сыра с добавлением растительного сыра, в частности черемши в количестве 30% от количества смеси. В результате опыта был создан новый вид сыра «Пикантный».

Физико-химическая оценка плавленого сыра «Пикантный» показала, что содержание белков, жиров и углеводов было меньше относительно плавленого сыра «Сливочный» на 7,3%; 6,5% и 11,1% соответственно. По количеству воды наблюдалось, наоборот, превосходство на 6,4%. Был ниже показатель и по энергетической ценности – на 12,6 ккал.

Экономическая эффективность показала, что производство плавленого сыра является для предприятия выгодным, так как прибыль от реализации одной тонны составит 26660 руб. уровень рентабельности составляет 18,0 %.

Полученные нами данные позволят рекомендовать добавление в технологию производства плавленых сыров 30% черемши.
Библиография:
2. Крусь Г.Н. Технология сыра и других молочных продуктов./ И.М. Кулецова, Н.И. Дунченко. // М.Колос. 1992. С. 320.
5. Тезиев Т.К. Молоковедение, технология производства и переработки молочных продуктов. / Нехотяева С.М., Кокоева А.Т. // Учебное пособие. 2009. С. 119.
РАЗРАБОТКА РЕЦЕПТУРЫ МЯСО-РАСТИТЕЛЬНОГО ПАШТЕТА
ФУНКЦИОНАЛЬНОЙ НАПРАВЛЕННОСТИ
DEVELOPMENT OF A COMPOUNDING OF MEAT AND CEREAL PASTE
OF THE FUNCTIONAL ORIENTATION

Абаева К.М., Маргиева Ф.Т.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: рецептуры, функциональные продукты питания, сырье.

Вырабатывающиеся в настоящее время на перерабатывающих предприятиях мясные паштеты представляют собой высокоокалорийные гомогенизированные консервы, с преимущественным содержанием чистого мяса. Нежная консистенция паштетов достигается специальными способами обработки сырья и подбором ингредиентов рецептуры.

Традиционные рецептуры мясных паштетов оцениваются в основном по органолептическим показателям и энергетической ценности, без учёта сбалансированности продукта по химическому составу. Таким образом, существующие рецептуры паштетов на мясной основе не всегда соответствуют нормам адекватного питания, а новые рецептуры (приближенные по составу к идеальному продукту) ещё не освоены производством [1, 3].

Задача повышения эффективности использования на пищевые цели имеющихся в стране белковых и жировых ресурсов должна решаться в основном путём разработки рецептур нового поколения и создания оригинальных технологий комбинированных мясорастительных продуктов с гарантированным содержанием белков, жиров, витаминов, макро- и микроэлементов и других важных компонентов.

Выполнение экспериментальных исследований в направлении создания высококачественных, биологически полноценных продуктов паштетной группы связано, прежде всего, с разработкой научно-обоснованных рецептур и модификацией технологического процесса производства в связи с применением новых пищевых компонентов полифункционального действия.

Современные принципы разработки рецептут мясных изделий основаны на выборе определенных видов сырья и таких их соотношений, которые бы обеспечивали достижение требуемого (прогнозируемого) качества готовой продукции, включая количественное содержание и качественный состав пищевых веществ, наличие определенных органолептических показателей, потребительских и технологических характеристик [2].

Исследования проводились в соответствии с методическими рекомендациями и включали в себя разработку рецептуры мясо-растительного паштета, а также оценку его физико - химических и органолептических показателей.

В качестве основного компонента мясного фарша мы использовали мясо птицы. Мясо домашней птицы ценится за высокие вкусовые достоинства. Оно состоит из тех же тканей, что и мясо убойных животных, но имеет отличительные особенности. Мясо домашней птицы более нежное, мышечная ткань содержит меньше соединительной ткани, оно легче и полнее усваивается организмом человека. Содержащиеся в мясе жиры обуславливают высокую энергетическую
ценность мясных продуктов, участвуют в образовании аромата и вкуса продуктов и содержат в достаточном для человека количестве жирные полиненасыщенные кислоты. В мышечной ткани мяса содержатся экстрактивные вещества, участвующие в образовании вкуса мясных продуктов и относящиеся к энергичным возбудителям секреции желудочных желез.

В качестве растительного компонента были выбраны корнеплоды моркови, поскольку они содержат богатый набор биологически активных веществ. Морковь содержит 1,3 % белков и 7 % углеводов, витамины группы B, A, РР, С, Е,К. Немало в моркови минеральных веществ, необходимых для организма человека: калия, железа, фосфора, магния, кобальта, меди, йода, цинка, хрома, никеля, фтора и др. С морковным пюре в смесь вносятся пектиновые вещества и эфирные масла, которые обусловливают ее своеобразный запах.

Молочные продукты (сливочное масло и сметана), входящие в состав рецептуры, также способствовали повышению пищевой ценности, улучшению консистенции и пластичности фарша.

Выработка паштета была произведена по стандартной технологии. Предварительно подготовленное мясное сырье измельчали на волчке с диаметром отверстий решетки 2-3 мм до получения однородной, мазеобразной массы. Затем добавляли бульон, овощи и специи. Для придания фаршу более нежной консистенции массу еще раз взбивали блендером.

Полученные результаты по изучению качественных показателей готового продукта свидетельствуют, что введение в рецептуру паштета моркови и молочных продуктов способствовали повышению содержания в нем массовой доли белка и жира - 20,6 и 30,5% соответственно. Массовая доля сухих веществ в продукте составила 27,8%, а массовая доля хлоридов - 1,4%.

По внешнему виду и консистенции паштет представлял собой однородную массу светло-желтого цвета. Вкус и запах - характерные, с выраженным привкусом и ароматом мяса курицы и пряностей. Содержащиеся в паштете жиры участвовали не только в образовании вкуса и запаха продукта, но также обуславливали его высокую энергетическую ценность.

Разработанная рецептура паштета позволяет получить новые мясные продукты с показателями качества, соответствующими требованиям стандарта. Внесение в рецептуру паштета овощных и молочных ингредиентов обеспечивают высокие функционально-технологические и потребительские свойства продукту.

Библиография:
ИСПОЛЬЗОВАНИЕ КУКУРУЗНОЙ КРУПЫ В ПИВОВАРЕНИИ

USE OF CORN GROATS IN BREWING

Абаева К.М., Кишкина Л.А.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: пивоварение, кукурузная крупа, несоложеное сырье, режим затирания.

Сегодня рынок пива насыщен продукцией как отечественной, так и зарубежных производителей, что ставит перед пивоварами необходимость принципиально нового понимания организации технического развития пивоваренного производства.

Одна из важнейших тенденций развития пивоваренной промышленности сегодня – расширение ассортимента и повышения качества выпускаемой продукции.

Основным сырьем для производства пива является ячменный солод, подготовка которого предполагает продолжительные трудовые и энергетические затраты. Замена части на несоложенное сырье сокращает производственные затраты, снижает себестоимость пива и улучшает состав экстракта сусл.

Цель наших исследований – изучить возможность использования кукурузной крупы в пивоварении.

В задачу наших исследований входило приготовить образцы пива с использованием кукурузной крупы и изучить качественные показатели пива.

Оптимизация технологии применения несоложеного сырья в производстве пива – значимая проблема на современном уровне развития технологии пивоварения.

Образцы пива готовили из светлого ячменного солода с добавлением кукурузной крупы. Контрольный образец без добавок. В 1-й образец вместо солода добавили 15% кукурузной крупы, во 2-й - 20%, в 3-й – 25%.

На вкус и аромат пива влияют технологические процессы – режим затирания, кипячение сусл и способ брожения.

При переработке несоложенных материалов учитывали разницу в структуре и состоянии крахмала и белков в солоде и несоложенном зерне. В процессе солодоращения крахмальные зерна освобождаются от связывающих их веществ, поэтому при затирании солода клейстеризация и разжижение крахмала ферментами протекает быстро. Крахмал несоложенного зерна клейстеризуется при более высокой температуре (в основном при кипячении). Клейстеризованный крахмал несоложенного зерна обладает высокой вязкостью, поэтому в затор из несоложенного сырья добавляли часть солода, предназначенного для затирания. Во время нагревания затора до температуры инактивации α-амилазы часть крахмала клейстеризуется. После смешивания солодовой и несоложеной частей затора происходит дальнейшее превращение разжиженного клейстеризованного крахмала.

При рассмотрении различных режимов затирания образцы сусла готовили одноотварочным способом с внесением кукурузной крупы в первую часть затора по следующему режиму: затирание при температуре 40...43°С с использованием для отварки 1/3 общей массы зернопродуктов. Применение низких начальных
температур затирания способствует гидролизу пентозанов. После выдерживания в течение 20 минут при 52°С; 40 минут при 63°С; 30 минут при 72°С смесь медленно доводили до кипения и кипятили 20 минут. Оставшуюся массу ячменного солода затирали при 52°С, после выдерживания в течение 30 минут соединяли с отваркой. При этом температура общей массы составляла 63°С. Выдерживали в течение 30 минут, подогревали до 72°С, затем выдерживали до полного осахаривания, подогревали до 78°С и фильтровали. Длительная мальтозная пауза необходима для того, чтобы получить сусло с высокой конечной степенью сбраживания.

Для охмеления сусла использовали гранулированный ароматный хмель с содержанием α кислот 3,3%. Режим внесения хмеля: через 10 минут после закипания 80% и 20% за 10 минут до окончания кипячения. Затем сусло профильтровали и охладили до температуры 7°С.

Основной биохимический процесс при производстве пива – спиртовое брожение сахаров суслова под воздействием ферментов дрожжей. Продолжительность главного брожения 7 суток. Доброживление проводили при температуре 2°С в бутылках 21 день. Для достижения достаточного количества СО2 в молодое пиво добавили 10% охмеленного суслова.

Анализ образцов пива показал, что образец, с заменой солода 20% кукурузной крупы имеет более высокую степень сбраживания, обладает более высокой стойкостью и пенообразующей способностью по сравнению с контрольным и другими образцами.

Аромат пива в третьем и первом образцах чистый, выраженный, во втором хороший, но недостаточно выраженный. В третьем образце отмечен вкус полный, гармоничный, в первом и втором образце хороший, но не очень гармоничный. Хмелевая горечь мягкая, слаженная во всех образцах.

Выводы:
1. Рекомендовать в целях повышения рентабельности пивоваренного производства замену части солода на кукурузной крупе в качестве несоложеного сырья до 20%.
2. Использование кукурузной крупы в пивоварении повышает качественные показатели и диетическую ценность пива.

Библиография:
2. Иванова Л.А., Казарян А.Г. Использование несоложеного сырья в производстве пива // Пиво и напитки, 2008 №1.
СООТВЕТСТВИЕ КАЧЕСТВА СЫРЬЯ ВЫХОДУ СПИРТА
COMPLIANCE OF QUALITY OF RAW MATERIALS TO AN ALCOHOL QUANTITY

Багаева А.З., Шабанова И.А.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: рожь, пшеница, физико-химические показатели, крахмал, гумми-вещества, клетчатка, ферментный препарат, выход спирта.

В настоящее время зерно ржи является второй после пшеницы, а в некоторых регионах и первой, по важности продовольственной культурой, перерабатываемой в разных отраслях пищевой промышленности, в том числе при производстве спирта для пищевых целей. Рожь характеризуется высокой зимостойкостью, меньшей требовательностью к условиям произрастания, чем другие культуры, легче переносит засуху, имеет лучший состав незаменимых аминокислот [1]. С переходом предприятий на работу в рыночных условиях экономики, повысились требования как к сырью, так и к выпускаемой продукции.

По своему строению рожь мало отличается от пшеницы, но соотношение составных частей у зерна ржи иное. Зерновка ржи состоит из трех основных частей зародыша, эндосперма и оболочек. Рожь содержит меньший процент эндосперма (70-74%), на большую долю оболочек (11-15%) и алейронового слоя (10-15%). Оболочки ржи более плотно связаны с эндоспермом, чем у пшеницы. Консистенция эндосперма у ржи более рыхлая. Структурной особенностью ржи является наличие в ней слизи или гумми-веществ [2,3]. В зерновке ржи преобладают по массе углеводы, содержание которых составляет 60-75%.

Содержание крахмала в зерне ржи колеблется в пределах 52-63%. Рожь в отличие от других зерновых культур может содержать повышенное количество сахаров (2-3%), среди которых обнаружены моно-, ди- и трисахариды, такие как сахароза, арабиноза, глюкоза, фруктоза, мальтоза, раффиноза, а также следы галактозы.

Важная особенность ржи – наличие в ее составе значительного количества гумми-веществ – от 2,5 до 7,4% на сухое вещество, способных набухать в воде и давать вязкие растворы [4].

Целью данной работы являлось использование ржи в производстве спирта. Для этого решались следующие задачи: определить физико-химические показатели зерна ржи и пшеницы; дать оценку качества полученных образцов спирта; определить выход спирта.

В контролльном варианте получали спирт из зерна пшеницы, воды, солодового молока, дрожжей; в первом варианте получали спирт из зерна ржи, воды, солодового молока, дрожжей; во втором варианте получали спирт из зерна ржи, воды, солодового молока, ферментного препарата Целлюклонст, дрожжей.

Физико-химическую оценку исследуемого зерна пшеницы и ржи проводили после предварительной мойки, очистки от сорных и органических примесей, высушенения и дробления. Массовая доля сухих веществ в зерне пшеницы составила – 86,34%, в зерне ржи – 85,98%; массовая доля «сырого» протеина в пшенице – 12,45%, во ржи – 9,0%; массовая доля «сырого» жира в пшенице составила - 1,9%, во ржи – 1,7%; массовая доля «сырой» золы в пшенице – 2,2%, во ржи – 2,0%; массовая доля «сырой» клетчатки в пшенице составила – 3,5%, во ржи – 2,8%; массовая доля безазотистых экстрактивных веществ в пшенице – 66,29%, во ржи – 70,48%; массовая доля крахмала в пшенице составила – 58,0%, во ржи –
55,0%; массовая доля гемицеллюлоз в пшенице была отмечена – 3,0%, во ржи – 8,5%, массовая доля сахаров в пшенице – 3,8%, во ржи – 5,0%.

В качестве контроля и в других вариантах применяли схему механико-ферментативной обработки зерна в соответствии со режимами Типового регламента по производству спирта.

Согласно полученным данным, образцы суслова во всех вариантах, полученных по режимам механико-ферментативного способа переработки, характеризуются концентрацией углеводов на уровне 16,8-17,2%. Массовая доля сбраживаемых углеводов составляет в них 11,0-12,1%. Максимальная степень сбраживания углеводов отмечена во втором варианте получения ржаного сульва с ферментным препаратом – 12,1%. Вероятно, всего, последний факт связан с тем, что в процессе производства ржаного сульва, предусматривающем на третьем этапе обработку замеса при температурах, близких к 100°C, в растворимое состояние переходит существенная часть некрахмальных полисахаридов сырья, в частности гемицеллюлоз. Как было ранее отмечено, гемицеллюлоз во ржи содержится до 8,5%, а в пшенице до 3,0%, то есть в 2,8 раза больше, чем в пшенице.

Вместе с тем известно, что гемицеллюлозы ржи на 80-90% состоят из пентоз, т.е. несбраживаемых углеводов. Причем они могут быть представлены и редуцирующими сахарами. Содержание общих редуцирующих веществ в контрольном образце (из зерна пшеницы) и образцах ржаного сульва составляет 12,7-14,0%, то есть выше, в среднем на 2%. После осахаривания крахмала и охлаждения сульва к смеси добавляли дрожжи. Для сбраживания сульва из крахмалистого сырья применяли термотолерантные дрожжи Saccharomyces cerevisiae расы XII. Смесь оставляли на брожение, поддерживая температуру от 25 до 30оС. Брожение продолжалось 72 часа.

Содержание спирта в контрольном варианте в зрелой бражке, полученной из зерна пшеницы + солод, было равно – 9,0 об.%; в первом варианте, в бражке, полученной из зерна ржи + солод – 8,9 об.%; во втором варианте, в бражке, полученной из зерна ржи + солод + ферментный препарат Целлюклаза также составила - 9,0 об.%. Кислотность имела предел – 0,42 и 0,45 градуса. Больше осталось сбраживаемых углеводов в первом варианте бражки - до 0,32 г/100 мл и меньше всего во втором варианте бражки - до 0,25 г/100 мл. В контрольном варианте бражки отмечено среднее значение – 0,30 г/100 мл. Видимая плотность бражки всех трех образцов, определяемая сахаромером показала один и тот же результат – 0 градусов.

Наименьшее содержание сбраживаемых углеводов во втором варианте опыта можно объяснить применением ферментного препарата Целлюклаза, обладающего разжижающим действием и большим переходом сухих веществ (в частности гемицеллюлоз) в растворимое состояние. В очистку бражки входила трехкратная перегонка, при которой получили спирт, с объемной долей этилового спирта 88,0 - 92,00%. В окончательную очистку дистилляционного спирта входила обработка образцов щелочью (NaOH) и активированным углем с последующей перегонкой с дефлегматором.

После очистки во втором варианте объемная доля спирта составила - 96,36%, в первом – 96,28%, в контрольном варианте – 96,30%. Пробу на чистоту с серной кислотой все образцы спирта после очистки выдерживали. Проба на окисляемость до очистки в исследуемых образцах длилась 5-6 минут, после очистки – 20-22 минуты. С помощью газохроматографического экспресс-метода определяли содержания токсичных микропримесей: альдегидов, сивушного масла, сложных эфиров, свободных кислот, метилового спирта и фурфурола, которые соответствовали показателям спирта согласно требованиям ГОСТов [5].
Таким образом, можно констатировать, что спирт, полученный из зерна пшеницы + солод (контрольный вариант), был получен с высокой объемной долей этилового спирта – 96,30% и наименьшими физико-химическими показателями, которые соответствуют требованиям ГОСТов. В первом варианте, спирт, полученный из зерна ржи + солод, отмечен с объемной долей этилового спирта 96,28% и наибольшими физико-химическими показателями, в сравнении с контролем вариантом, также соответствует требованиям стандартов. Наилучший образец спирта был получен во втором варианте, из зерна ржи + солод + ферментный препарат Целлюкласт, с объемной долей спирта – 96,36%, физико-химические показатели которого мало чем отличались от показателей контрольного варианта спирта, что также соответствует требованиям стандартов.

Практический выход спирта всегда меньше теоретического, так как часть сбраживаемых углеводов сырья и образующегося при брожении спирта теряется. Таким образом, рассчитанный теоретический выход спирта из крахмала исследуемого сырья отличался от практического. Рассчитанный теоретический выход спирта из крахмала пшеницы был равен – 0,68 л, из крахмала ржи – 0,66 л (из 1 кг сырья). Практический выход спирта в контрольном варианте составил из крахмала пшеницы + солод - 0,15 л, из крахмала ржи + солод – 0,14 л, из крахмала ржи + солод + ферментный препарат – 0,16 л (из 1 кг сырья). Практический выход спирта из крахмала ржи отмечен наибольшим (0,16 л/кг, во втором варианте). При этом отношение практического выхода к теоретическому составило 24,24% (во втором варианте опыта).

Наименьший показатель практического выхода спирта отмечен из крахмала ржи (в первом варианте). Отношение практического выхода спирта к теоретическому из крахмала ржи (в первом варианте) составило – 21,21%. Средний показатель имеет отношение практического выхода спирта к теоретическому из крахмала пшеницы (в контрольном варианте) – 22,05%.

Наибольший показатель практического выхода спирта во втором варианте опыта, можно объяснить применением ферментного препарата – Целлюкласта, так как он может расщеплять некрахмалистые полисахариды (целлюлоза и другие глюкозаны, пентозаны, гемицеллюлозы). Следует также отметить, что использование ферментного препарата во втором варианте опыта увеличивает выход спирта на 2%, в сравнении с контролем вариантом.

Библиография:
БАКТЕРИОФАГИ PROVIDENCIA, ИСПОЛЬЗУЕМЫЕ ДЛЯ СОЗДАНИЯ БИОПРЕПАРАТА ПО ДЕКОНТАМИНАЦИИ ПИЩЕВЫХ ПРОДУКТОВ
THE BACTERIOPHAGES PROVIDENCIA, USED TO CREATE PREPARATION FOR THE DECONTAMINATION OF FOOD

Барт Н.Г., Золотухин С.Н., Васильев Д.А.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
ugsha@yandex.ru

Ключевые слова: биоконтроль, бактериофаги, пищевые продукты, биопрепараты.

Работа посвящена определению спектра литической активности бактериофагов Providencia. Используя метод нанесения капель бактериофагов на газон исследуемой культуры авторами установлено, что изученные фаги обладали разным диапазоном литической активности, от 10^{-5} до 10^{-10} по Аппельману и от 10^{8} до 10^{9} по Грациа [1].

Бактерии рода Providencia удавалось чаще выделять на свиноводческих, реже на молочных фермах. Бактерии данного вида были обнаружены в продуктах питания: газированной воде в Греции в 2005 году; куриных яйцах в США; устрицах из реки Кокоса в Бразилии; рыбе – окуне пойманной в реке Волга; колбасе салями из домашней птицы в Словакии. Следовательно, данные бактерии могут вызывать пищевые инфекции [2].

Литическая активность бактериофага оценивается по его способности вызывать лизис бактериальной культуры в жидких или плотных питательных средах [8]. Активность по методу Аппельмана выражается максимальным разведением, в котором испытуемый бактериофаг проявил свое литическое действие. Более точным методом оценки литической активности бактериофага является определение количества активных корпускул фага в единице объема по методу Грациа [4].

В качестве исследуемых культур использовали 28 (2 референс штамма и 26 выделенных нами «полевых») штаммов бактерий рода Providencia [3].

На поверхность МПА в чашках Петри пипеткой наносили 3-4 капли 18-24 часовой бульонной культуры исследуемых микроорганизмов [7]. Затем равномерно распределяли по поверхности среды стерильным шпателем. Чашки ставили в термостат для подсушивания на 15-20 минут. После чего размечали чашки маркером на три сектора: на два сектора засеянного агара легким прикосновением пипетки, наносили каплю исследуемого фага; на третий сектор по центру в качестве контроля наносили стерильный МПБ, наклоняли чашку так, чтобы капли стекли, а затем инкубировали при температуре 37 °С. Выявление лизиса бактериального газона проводили через 18-24 часа [6].

В результате проведенных исследований нами установлено, что изученные фаги обладали разным диапазоном литической активности. Широким диапазоном по отношению к изучаемым культурам обладают фаги F-73 УГСХА и F-17 УГСХА – 60,7 %, F-20 УГСХА, F-1 УГСХА и F-28 УГСХА – 64,3 %, F- 9 УГСХА и F-41 УГСХА – 53,6 %, F-67 УГСХА – 85,7%, F-87 УГСХА – 82,1 %.

Для дальнейшего изучения отобрали два бактериофага с наибольшим диапазоном по отношению к изучаемым культурам – фаг F-87 УГСХА, который
лизировал 82,1 % и фаг F-67 УГСХА – 85,7 % штаммов бактерий рода Providencia, а в сумме фаги проявили литическое действие в отношении 96,4 % всех исследованных культур (табл. 1).

Проведенные исследования показали, что наибольшим спектром литической активности обладали два бактериофага Providencia, это F – 67 УГСХА и F – 87 УГСХА. Данные штаммы фагов были отобраны для конструирования диагностического биопрепарата.

Библиография:
ТЕХНОЛОГИЯ ПРОИЗВОДСТВА МОЛОДОЙ БАРАНИНЫ С ИСПОЛЬЗОВАНИЕМ ХЛОРИСТОГО КОБАЛЬТА В РАЦИОНЕ ЯГНИЯТ

TECHNOLOGY OF LAMB PRODUCTION USING COBALT CHLORIDE IN DIET OF LAMBS

Баширова Э.С., Кесаев Х.Е.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: кормление, микроэлементы, ягнят, весовой рост, продуктивность.

Для значительного увеличения производства продуктов животноводства необходимо прежде всего использовать достижения науки по кормлению животных. Важно не только сбалансировать рационы по питательности, содержанию протеина и витаминов, но так наладить полноценное минеральное питание животных и птицы, чтобы обеспечить их жизненно важными макро- и микроэлементами.

Микроэлементы необходимы для образования и нормального действия наиболее активных в физиологическом отношении веществ организма, они являются необходимой составной частью многих биологически активных соединений и участвуют в регулировании промежуточного обмена веществ.

Известно влияние микроэлементов на продуктивность крупного рогатого скота, свиней, птицы, в то же время в овцеводстве вопрос использования микроэлементов в кормлении, особенно молодняка, освещен недостаточно. В связи с этим перед нами поставлена задача изучить влияние солей хлористого кобальта на весовой рост и мясную продуктивность молодняка овец.

Для опыта было подобрано 20 тонкорунных баранчиков в месячем возрасте. Все поголовье ягнят было разбито на 2 группы по 10 голов в каждой: первая группа контрольная, а вторая – опытная.

Условия кормления, ухода и содержания ягнят обеих групп были одинаковыми, разница была лишь в том, что опытные ярки получали дополнительно к основному рациону на 1 кг сухого корма 5 мг хлористого кобальта. Подопытный молодняк взвешивался в возрасте 1, 2, 3, 4 и 5 месяцев утром до кормления. В возрасте 5 месяцев провели контрольный убой по 5 баранчиков из каждой группы.

Согласно полученным данным, баранчики обеих групп по живой массе в возрасте одного месяца практически не отличались. Однако после дачи микроэлемента животным опытной группы, ситуация начала меняться.

Так, если в первый месяц опыта абсолютный прирост баранчиков контрольной группы составил 6,4 кг, то у сверстников опытной группы этот показатель оказался на 10,9% больше. Это оказало положительное влияние на весовой рост опытных баранчиков, у которых в конце второго месяца опыта живая масса в среднем составила 15,1 кг, что на 17,5 кг выше, чем живая масса сверстников контрольной группы.

Аналогичная закономерность имеется в период от 2 до 3 месяцев, когда у баранчиков опытной группы абсолютный прирост живой массы оказался на 8,3% больше, чем у сверстников, в результате этого живая масса первых в возрасте 3 месяцев достигла 23,2 кг, что 16,6% выше показателя сверстников.
В период от 3 до 4-месячного возраста происходит заметное снижение абсолютного прироста живой массы баранчиков обеих групп, в частности, у опытных ягнят – на 13,5%, у контрольных - на 3,8%, что снизило разницу в живой массе между группами в возрасте 4 месяцев до 15,4%.

За весь период абсолютный прирост баранчиков опытной группы составил 21,9 кг, у контрольных – 19,5 кг, с разницей в пользу первых на 12,3%. В результате опыта живая масса опытных баранчиков в конце опыта достигла 30,7 кг, что на 8,9% выше показателя сверстников.

Для подтверждения полученных данных нами рассчитан среднесуточный прирост живой массы подопытных ягнят.

Расчеты показали, что в целом за период проведенного опыта баранчики опытной группы, которым скармливался микроэлемент, увеличивали весовой прирост в среднем по 146 грамм в сутки, тогда как этот же показатель у сверстников оказался на 12,3% ниже.

Проведение контрольного убоя в конце опыта подтвердило вышеуказанные закономерности получения положительного результата скармливания подопытным животным соли хлористого кобальта.

Баранчики опытной группы в возрасте 5 месяцев превосходили контрольных по предубойной массе на 8,9, по убойной массе – на 15,1, по массе туши и почками – на 15,5%. Кроме того, опытный молодняк превосходит сверстников на 2,69%.

Результаты обвалки туши показывают, что в туши баранчиков, которым скармливали микроэлемент кобальта, содержится 10,75 кг мякоти, что на 15,1% больше, чем у сверстников контрольной группы. Они же превосходят сверстников и по ее относительной массе в среднем на 3,48 абсолютной единицы.

Подопытный молодняк практически не отличался по абсолютной массе костей туши, в то же время по относительной их массе баранчики опытной группы уступают сверстникам в среднем на 3,56%. Такая закономерность характерна для молодняка с лучшими мясными качествами.

Введение в рацион хлористого кобальта оказало положительное влияние на сортовой состав туш подопытных животных.

Анализ показал, что по абсолютной массе 1 сорта опытные баранчики превосходили сверстников в среднем на 17,4%, причем это превосходство подтверждается и относительным показателем в 1,51%.

При сравнении выхода отрубов 2 сорта оказалось, что преимущество в пользу ярок контрольной группы составило всего 30 граммов, однако по относительной массе преимущество было на 2,18%.

Основными составляющими баранины являются вода и жир, которые взаимосвязаны по количественному составу. Анализ показал, что содержание воды в мясе контрольных баранчиков составило 70,3%, что превышает таковое опытных сверстников на 3,28%, в то же время они на 3,65% уступают последним по содержанию жира. По количеству белка и золы в мясе животные обеих групп практически не отличались.

Используя данные химического анализа, мы определили калорийность мяса. Калорийность мяса опытных баранчиков составила 508,8 к/дк, что на 17,9% больше показателя сверстников.

Учитывая стоимость на рынке одного килограмма баранины в 280 рублей, суммарная стоимость туши одного баранчика опытной группы массой 13,74 кг
составит 3847,2 рубля, что на 506,8 рубля или на 15,5% больше стоимости туши сверстника контрольной группы.

Таким образом, использование соли хлористого кобальта в кормлении баранчиков опытной группы дает положительный экономический эффект.

Выводы:
- данные анализа кормов, скармливаемых молодняку овец, показывают, что содержание в них кобальта полностью отсутствует;
- введение в рационе баранчикам 5 мг соли хлористого кобальта на 1 кг сухого корма способствовало повышению предубойной массы на 8,9, по убойной массе – на 15,1, по массе туши с почками – на 15,5, массе мякоти – на 15,1, уступая последним по относительной массе костей в туших;
- баранчики опытной группы превосходят сверстников контрольной группы по абсолютной и относительной массе мяса 1 сорта, по содержанию жира и калорийности мяса;
- рекомендуется использовать в кормлении молодняка овец соль хлористого кобальта, что улучшает его убойные качества.

Библиография:
ХЛЕБОПЕКАРНЫЕ КАЧЕСТВА ЗЕРНА ОЗИМОЙ ПШЕНИЦЫ, ВЫРАЩЕННОЙ В РАЗЛИЧНЫХ ПОЧВЕННО-КЛИМАТИЧЕСКИХ УСЛОВИЯХ

BAKING QUALITY OF WINTER WHEAT GROWN IN DIFFERENT SOIL AND CLIMATIC CONDITIONS

Царукаева К.В., Тохтиева Л.Х.
Горский государственный аграрный университет, Россия

ggau@globalalania.ru

Ключевые слова: качество зерна, сорт, стекловидность зерна, пористость, удельный объем.

В настоящее время внедряются в сельское хозяйство новые более устойчивые против болезней и к полеганию сорта, которые выращиваются в различных почвенно-климатических зонах. Большое значение имеют условия выращивания, которые заметно влияют на хлебопекарные показатели качества. Однако в разных условиях эти вопросы изучены не достаточно полно. В связи с этим данные исследования посвящены изучению влияния условий выращивания на хлебопекарные качества зерна озимой пшеницы.

По мнению А.Н. Павлова[2], наиболее важным фактором, определяющим содержание белка в зерне пшеницы, является степень обеспеченности растений водой в течение вегетации.

А.А. Созинов [3] отмечает, что в степных районах Украины наиболее благоприятные условия для получения высококачественного зерна озимой пшеницы создаются в годы, когда вегетация озимых возобновляется при наличии достаточных запасов влаги в почве, в период от выхода в трубку до колошения стоит теплая погода и выпадают дожди, а формирование зерна идет при не чрезмерно высокой температуре и умеренном дефиците влаги.

Мы поставили перед собой задачу исследовать влияние условий выращивания на хлебопекарные качества муки из озимой пшеницы, выращенной в лесостепной зоне и выращенной в зоне сухой степи.

Исследования проводились в условиях лаборатории кафедры технологии хранения и переработки сельскохозяйственной продукции.

Материалом для исследований хлебопекарных качеств была взята пшеница сорта Руфа. Руфа – выведен в краснодарском НИИСХ им. П.П. Лукьяненко методом индивидуального трехкратного отбора.

Разновидность люцерн. Колос цилиндрический, средней длины и плотности. Зерно средней крупности, овальное, светло-красной окраски. Бороздка неглубокая, масса 1000 зерен 37-48г., средняя урожайность 49,6 ц/га.

Среднеранний. Вегетационный период 232-277 дней. Зимостойкость средняя – ниже средней. Высота растения 84-106см. Устойчивость к полеганию и осыпанию хорошая. Засухоустойчивость высокая. Хлебопекарные качества хорошие.
Схема опыта следующая:
1. Хлеб из зерна, выращенного в лесостепной зоне
2. Хлеб из зерна, выращенного в зоне сухой степи.

Качество готового хлеба и теста определялось по следующим показателям: влажность мякиша, %; кислотность, Н°; пористость, %; удельный объем, мл/100 г; дегустационная оценка.

Все определения проводились строго в соответствии с требованиями ГОСТ 28808-901. В стандартах требования к качеству установлены по органолептическим и физико-химическим показателям. Определение влажности проводили методом высушивания, пористость - прибором Журавлева, кислотность - арбитражным методом. При органолептической оценке качества хлеба определяют внешний вид, состояние мякиша, вкус, запах. Данные наших исследований по выявлению условий выращивания на физические свойства зерна приводятся в таблице 1.

Таблица 1 – Влияние условий выращивания на физические свойства зерна озимой пшеницы

<table>
<thead>
<tr>
<th>Зона</th>
<th>Стекловидность, %</th>
<th>Масса 100 зерен, г</th>
<th>Натуральная, г/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лесостепная</td>
<td>56</td>
<td>38,5</td>
<td>770</td>
</tr>
<tr>
<td>Зона сухой степи</td>
<td>51</td>
<td>36,8</td>
<td>740</td>
</tr>
</tbody>
</table>

* – неполный цикл (11 лет).

Анализ полученных данных позволяет отметить, что в год исследований погодные условия сложились наиболее благоприятные для формирования зерна в лесостепной зоне, соответственно, показатели, характеризующие физические свойства зерна в данной зоне, превосходят показатели зерна, выращенного в зоне сухой степи. Стекловидность в лесостепной зоне составляет 5,6%, в то время как в зоне сухой степи - 51%, т.е. на 5% выше. Масса 1000 зерен больше в лесостепной зоне на 1,7 г, а натуральная масса - на 30 г/л.

Данные наших исследований по определению количества и качества клейковины представлены в таблице 2.

Таблица 2 – Влияние условий выращивания на количество и качество клейковины

<table>
<thead>
<tr>
<th>Зона</th>
<th>Содержание клейковины, %</th>
<th>Качество клейковины</th>
<th>Цвет</th>
<th>Упругость</th>
<th>Эластичность</th>
<th>Растяжимость</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лесостепная</td>
<td>31,1</td>
<td>клейковина белая</td>
<td>68</td>
<td>хорошая</td>
<td>хорошая</td>
<td>хорошая</td>
</tr>
<tr>
<td>Зона сухой степи</td>
<td>27,9</td>
<td>клейковина белая</td>
<td>81</td>
<td>хорошая</td>
<td>хорошая</td>
<td>средняя</td>
</tr>
</tbody>
</table>

Рассматривая влияние условий выращивания на содержание сырой клейковины можно отметить, что данный показатель в лесостепной зоне превышает данные в зоне сухой степи на 2,2%. Качество же клейковины достаточно высокое в обоих зонах, хотя по общей оценке качество клейковины в зерне, выращенном в лесостепной зоне, можно отнести к 1 группе, а в зоне сухой степи ко 2 группе. Упругость клейковины зерна из лесостепной зоны по показаниям прибора ИДК-1 составляет 68 условных единиц, а зерна из зоны сухой степи - 81 условных единиц. Эластичность клейковины характеризуется в обеих зонах как хорошая, а растяжимость в лесостепной зоне хорошая, в зоне сухой степи можно охарактеризовать как среднюю.
Данные по влиянию условий выращивания на физико-химические показатели пшеничного хлеба приводятся в таблице 3.

Таблица 3 – Влияние условий выращивания зерна на физико-химические показатели пшеничного хлеба

<table>
<thead>
<tr>
<th>Зона</th>
<th>Кислотность, °Н</th>
<th>Влажность, %</th>
<th>Пористость, %</th>
<th>Удельный объем, мл /100г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лесостепная</td>
<td>1,6</td>
<td>41</td>
<td>81</td>
<td>545</td>
</tr>
<tr>
<td>Зона сухой степи</td>
<td>2</td>
<td>44</td>
<td>69</td>
<td>324</td>
</tr>
</tbody>
</table>

Данные таблицы показывают, что хлеб, полученный из зерна, выращенного в лесостепной зоне, по всем физико-химическим показателям превосходит хлеб, полученный из зерна, выращенного в зоне сухой степи. Пористость выше на 12% и соответственно выше удельный объем хлеба на 179 мл/100 г.

Н.М. Личко [1] отмечает, что усвояемость хлеба зависит от многих факторов, в том числе от его органолептических свойств – внешнего вида, структуры, пористости, вкуса и аромата. Органолептическая оценка хлеба с обеих зон характеризуется как достаточно высокая. Однако, характеризуя мякиш хлеба, следует отметить, что хлеб, полученный из зерна, выращенного в зоне сухой степи, по этому показателю уступает. Поры мелкие, недостаточно равномерно распределены, стенки средней толщины.

Проведенные исследования позволяют сделать следующие выводы:
1. Условия выращивания оказывают заметное влияние на основные показатели качества зерна, учитываемые при заготовках продовольственной пшеницы. При этом в первую очередь изменяется стекловидность, масса 1000 зерен, натурная масса.
2. В степной зоне на каштановой почве в богарных условиях содержание клейковины составило 27,9%. Зерно мелкое, с массой 1000 зерен 36,8г и натурой 740 г/л.
3. По мере перемещения с севера на юг влагообеспеченность и плодородие почв возрастает, и это положительно сказывается на повышении показателей качества зерна.
4. Лучшая выполненность зерна и высокая стекловидность в лесостепной зоне сочетаются с более высоким содержанием и качеством клейковины.
5. Объемный выход и другие показатели качества хлеба подтверждают что влагообеспеченность и плодородие почвы в лесостепной зоне более благоприятны для выращивания хлебопекарной пшеницы, чем в зоне сухой степи в богарных условиях Моздокского района.

Библиография:
2. Павлов А.Н. Накопление белка в зерне пшеницы и кукурузы. – М: Колос, 1967.- 82с.
ИСПОЛЬЗОВАНИЕ РАСТИТЕЛЬНОГО СЫРЬЯ ДЛЯ УЛУЧШЕНИЯ КАЧЕСТВА ХЛЕБА
USE OF VEGETABLE RAW MATERIALS FOR IMPROVEMENT OF QUALITY OF BREAD

Джоева Дз.О., Цугкиева В.Б., Дзантиева Л.Б.
ФГБОУ ВО «Горский государственный аграрный университет»
ggau@globalalania.ru

Ключевые слова: хлеб, облепиха, качество, брожение, тесто.

Достижения научно-технического прогресса находят отражение в процессе производства хлеба.

В настоящее время основными направлениями исследований в области хлебопекарной промышленности являются разработка и внедрение гибких технологий, позволяющих управлять процессом приготовления хлеба на основе применения хлебопекарных улучшителей с разными свойствами, использование в хлебопечении новых видов сырья для решения проблемы полноценного питания, в том числе создания сортов хлеба диетического и лечебного назначения [1].

Облепиха является поливитаминной культурой имеющей так же богатый микроэлементный состав, но вопрос о влиянии облепихи на качество хлеба недостаточно изучен. В связи с этим целью научной работы явилось изучение возможности использования ягод облепихи в хлебопечении.

При изучении химического состава ягод облепихи, произрастающей в горной зоне РСО-Алания, В.А.Олисаевым и Л.С.Кадиевой [2] установлено, что плод облепихи – мясистая сочная костянка. Её плоды можно назвать копилкой витаминов, так как они содержат витамины: С, В, B2, В6, Е, Р, К, в них имеется ярко оранжевое масло до 8,8%, а в семенах – 13,1%. В плодах содержится более 12 биоактивных веществ, в том числе, бетоситостонин. Витаминами наиболее богат сок облепихи, в котором аскорбиновой кислоты содержится около 600 мг%, каротина свыше 20 мг%. Однако много витаминов и в листьях (до 370 мг%). Из микроэлементов в облепихе содержатся такие важные микроэлементы, как йод и селен.

Известно, что йододефицитное состояние является причиной многих заболеваний. Эти заболевания можно предотвратить путем проведения йодной профилактики. Так как хлеб основной продукт питания человека, то добавление ягод облепихи, содержащей йод, в хлеб может частично решить проблему дефицита йода в питании человека.

Экспериментальный хлеб выпекали безопарным способом по рецептуре: мука, вода, соль, дрожжи и ягоды облепихи использовали от 2 до 15 грамм для выпечки хлеба массой 300 грамм. Исследованию подвергали тесто и готовый хлеб. Ягоды вносили в протертом виде.

Наибольшая кислотность была в образце теста с добавлением ягод облепихи 1,2°Н. Это связано с высоким содержанием органических кислот в ягодах облепихи, а наибольшая влажность 60,4% у контрольного образца, а наименьшая 50,1% у образца теста с добавлением 15 г ягод облепихи.
Наилучшие показатели имеет хлеб с добавлением 10 г ягод облепихи. Удельный объем составил 460 мл/100г, пористость 74,3 см³, влажность 44,0%, кислотность 1,93 оН.

Органолептическая оценка хлеба показала, что наилучшие показатели (запах, вкус, состояние мякиша) имел хлеб с добавлением 10 г ягод облепихи.

Исследованиями установлено, что добавление ягод облепихи в хлеб улучшает вкусовые свойства хлеба, повышает выход изделия, увеличивает пористость мякиша, замедляет черствение, при этом хлеб приобретает специфический аромат.

Выводы:
1. Для улучшения качества хлеба можно использовать ягоды облепихи, произрастающей в РСО-Алания.
2. Наилучшие показатели имел хлеб с добавлением 10 г ягод облепихи.
3. С внесением в хлеб ягод облепихи повысилась диетическая и биологическая ценность хлеба.

Библиография:
1. Матвеева И.В., Белявская И.Г. Пищевые добавки и хлебопекарные улучшители в производстве мучных изделий. М. 200., - С.6-7.
ИЗУЧЕНИЕ ОСНОВНЫХ ФЕНОТИПИЧЕСКИХ БИОЛОГИЧЕСКИХ СВОЙСТВ ФАГОВ БАКТЕРИЙ РОДА SERRATIA
STUDY OF BASIC PHENOTYPIC BIOLOGICAL PROPERTIES OF PHAGES BACTERIA OF THE SERRATIA

Ефрейторова Е.О., Пульчеровская Л.П., Васильев Д.А., Золотухин С.Н.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия

Ключевые слова: бактерии рода Serratia, бактериофаги, негативные колонии, биологические свойства, морфология негативных колоний, литическая активность, специфичность.

Бактерии рода Serratia обитают в почве, воде, различных пищевых продуктах (молоко, хлеб, фрукты и т.д.) и препаратах, включая лекарственные, в желудочно-кишечном тракте грызунов и насекомых. Чаще заболевания у человека вызывает S. marcescens. Серратии вызывают пищевые токсикоинфекции, сепсис, пневмонию и поражение мочевыводящих путей.

Установлена способность серратий вызывать поражения у растений [10, 11]. В связи с нерациональным применением антибактериальных препаратов в практике, в последние время наблюдается тенденция увеличения частоты выделения условно-патогенных грамотрицательных бактерий, в частности бактерий рода Serratia, при инфекциях различной локализации [1-3].

Представители данного рода в ходе эволюции приобрели способность при попадании в организм человека не только выживать, но и наносить ему вред [4,5]. Целью наших исследований явилось изучение следующих биологических свойств фагов бактерий рода Serratia выделенных из объектов окружающей среды: морфология негативных колоний; литическая активность; специфичность действия.

Морфологию негативных колоний фагов изучали при посевах фагов методом агаровых слоев. В пробирку с расплавленным и остуженным до 46-48°C 0,7% МПА вносили 1мл фага в разведении 10-9 (для получения изолированных негативных колоний) и 0,2 мл индикаторной суточной бульонной культуры. Содержимое пробирки тщательно перемешивали и выливали на поверхность 1,5% МПА. После застывания агара чашки помещали в термостат. Учет производился через 18-20 часов инкубации при температуре 37°C. Негативные колонии, образованные изучаемыми бактериофагами, были нами разделены на два типа. К первому типу относили фаги: S-2 и S-3 серии УГСХА, которые образовывали округлые колонии с ровными краями в диаметре до 1мм [2]. Культуры бактерий S. marcescens, для определения литической активности бактериофагов, выращивали на стандартном мясопептонном бульоне в течение 18-20 часов [3].

Литическую активность выделенных бактериофагов оценивали по их способности вызывать лизис бактериальной культуры в жидких и плотных питательных средах, и выражали это тем максимальным разведением, в котором испытуемые бактериофаги проявили своё литическое действие. Более точным
методом оценки литической активности бактериофага является определение количества активных корпускул фага в единице объёма. Однако этот показатель относительный, так как активность фага зависит от различных условий, основными из которых являются биологические особенности бактериальной клетки, которые в свою очередь зависят от физических свойств среды, её химического состава, окружающей температуры и так далее. Поэтому активность фага всегда определяется в конкретных, стандартизированных условиях.

Определение литической активности выделенных фагов S-1, S-2 и S-3 серии УГСХА по методу Аппельмана.

В ряд пробирок из нейтрального стекла одинакового диаметра наливали по 4,5 мл бульона. В первую пробирку вносили 0,5 мл исследуемого фага. Затем делали последовательные разведения, перенося отдельными пипетками из пробирки в пробирку по 0,5 мл бактериофага. Использовали 10 пробирок. Из последней пробирки 0,5 мл выливали в дезраствор, затем во все пробирки вносили по 0,2 мл 18-часовой бульонной культуры S. marcescens №11. 11-я и 12-я пробирки являются контрольными, в первой из них находится бульон и культура (без фага), во второй - один бульон (контроль на стерильность). Все 12 пробирок помещали в термостат при 37С на 18 часов. Титр фага устанавливали по последней, прозрачной пробирке ряда и выражали разведением фага.

Литическая активность селекционированных бактериофагов составила по Аппельману от 10-6 - 10-8.

Также литическую активность определяли методом агаровых слоёв, описанным Золотухиным С.Н.(1999), Пульчеровской Л.П. (2002): 1,5% мясопептонный агар накануне опыта разливали по чашкам в количестве 25-30 мл. Чашки, прикрытые стерильными бумажками, подсушивали в термостате или под бактерицидной лампой в течение нескольких часов. Это необходимо для абсолютной сухости чашек, так как малейшее их увлажнение может искажить результаты количественного изучения фага. Агар 0,7% в количестве 2,5 мл, предварительно разлитый в стерильные пробирки, расплавляли и остужали до 46-48С. Исследуемый фаг в количестве 1,0 мл (в разведении от 10-6 до 10-10) вносили в 2,5 мл 0,7% агара, туда же вносили 0,2 мл суточной бульонной культуры S. marcescens, всё быстро и тщательно перемешивали, вращением пробирки в ладонях, и выливали на поверхность 1,5% агара. Смесь осторожными движениями распределяли по поверхности агара, чашки для затвердения оставляли на столе на 30 минут, а затем инкубировали в термостате при 37С в течение 18-20 часов. После инкубации подсчитывали количество негативных колоний фага и умножали полученное число на степень разведения. Титр фага S-1 УГСХА по Грация составил 3х108, S-2 УГСХА -1,2х109 и S-3 УГСХА – 3,7х109 фаговых корпускул в 1 мл [7, 8].

Титр селекционированных бактериофагов составил на плотном питательном агара по Грация от 3 х 108 до 3,7 х 109 фаговых корпускул в 1 мл.

Видовая специфичность фагов используется в практике для дифференциации бактерий. Эта способность фагов определяется, прежде всего, сродством их к рецепторам лизируемых бактерий [2, 3, 9].

Определение видовой специфичности 3-х изучаемых бактериофагов бактерий S. marcescens (S-1 УГСХА, S-2 УГСХА и S-3 УГСХА) проводили на агаровых средах путём нанесения фага на газон культуры. На поверхность МПА в чашках Петри пастеровской пишеткой наносили 3-4 капли 18 часовой бульонной
культуры исследуемых микроорганизмов. Затем равномерно распределяли по поверхности среды стерильным шпателем. Чашки ставили в термостат для подсушкивания на 15-20 минут. На поверхность засеянной среды пастеровской пипеткой легким прикосновением капли наносили фаг и наклоняли, чтобы капли стекли, а затем инкубировали при температуре 37С, оценку результатов проводили через 18-20 часов.

В результате изучения специфичности трёх бактериофагов бактерий S. marcescens (S-1 УГСХА, S-2 УГСХА и S-3 УГСХА) по отношению к представителям других семейств и родов использовали: Proteus 12 штаммов, Morganella 8 штаммов, Klebsiella 5 штамма, Salmonella 5 штаммов, Pseudomonas aureginosa 3 штамма, E.coli 16 штаммов, Enterobacter 7 штамма, Y.enterocolitica 10 штаммов [1-6].

В результате проведенных исследований было установлено, что данные фаги не лизировали ни одну из испытуемых бактериальных культур других видов бактерий.

На основании полученных результатов можно сделать вывод, о том, что Селекционированные фаги являются строго специфичными по отношению к бактериям рода Serratia и не активны к представителям других семейств и родов бактерий.

Выше указанные фенотипические биологические свойства изученных нами бактериофагов S. marcescens (S-1 УГСХА, S-2 УГСХА и S-3 УГСХА) открывают большие перспективы для их использования в качестве диагностических и лечебных препаратов.

Библиография:
2. Ефрейторова, Е.О. Изучение биологических свойств бактерийserratia marcescen выделенных из пищевых продуктов и объектов окружающей среды / Е.О.Ефрейторова, Л.П.Пульчеровская, Д.А.Васильев. Технологический институт филиал ФГБОУ ВПО «Ульяновская ГСХА им. П.А.Столыпина» Научно-практическая конференция «Наука в современных условиях: от идеи до внедрения» г. Дмитровград, Научный вестник выпуск №13. С. 175-180.
7. Васильев Д.А. Биосенсорная детекция бактерий рода Bacillus в молоке и молочных продуктах для предупреждения их порчи / Д.А. Васильев, С.Н.

CONCENTRATIONS OF CADMIUM AND LEAD, ESTIMATED AND PROVISIONAL TOLERABLE WEEKLY INTAKE IN DIFFERENT TYPES OF RICE FROM MAZANDARAN PROVINCE (IRAN)

Mohamad Hossein Esfahanizadeh1,2, Lalah Karimzadeh1,2, Behnaz Moshrefi3, Gholam Ali Bagheri2, Hassan Mokarami3, Hosein Sharifi2, Hani Dadashi2
(1) The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
(2) Food and Drug Control Lab, Mazandaran University of Medical Sciences, Sari, Iran
(3) Food Surveillance Administration, Mazandaran University of Medical Sciences, Sari, Iran
lalehkarimzadeh@gmail.com

Key words: rice, heavy metals, cadmium, lead, estimated weekly intake, provisional tolerable weekly intake.

One of the topics that used to protect the health of consumers and to achieve food safety is the control of maximum tolerances of heavy metals in food, especially rice. The concentrations of cadmium (Cd) and lead (Pb) in imported and cultivated rice in Mazandaran province (Iran) was investigated using atomic absorption spectrophotometry according to the method of AOAC (2000). The concentrations of cadmium and lead in tested samples ranged from 1 to 148 µg kg\(^{-1}\) and 1.22-690 µg kg\(^{-1}\), respectively. In both domestic cultivated and imported rice samples, the mean values for cadmium and lead were significantly lower than the allowable limits set by FAO/WHO and the National Standards of Iran. Estimated weekly intake (EWI) of cadmium and lead from domestic and imported rice samples was lower than provisional tolerable weekly intake (PTWI) recommended value by Joint FAO/WHO Expert Committee on Food Additives (JECFA). Some imported rice samples had the highest weekly intake of cadmium (0.28 µg/kg body weight) and lead (0.43 µg/kg body weight).

References:
1. Institute of Standards and Industrial Research of Iran (ISIRI) (2010). Food and feed-maximum limit of heavy metals (1st ed.). Tehran, Iran: ISIRI
DETERMINATION OF TOTAL AFLATOXIN IN ON SALE RICE IN MAZANDARAN PROVINCE OF IRAN

Mohamad Esfahanizadeh1,2, Laleh Karimzadeh1,2, Ebrahim Salehifar3, Mohamad Gholipor1, Zeinab Rezaee1
(1) The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
(2) Food And Drug Control Lab, Mazandaran University of Medical Sciences, Sari, Iran
(3) Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
+981133344443, lalehkarimzadeh@gmail.com

Key words: aflatoxin, rice, mycotoxins, Mazandaran, Iran.

It has been evident that fungal spoilage of food causes economic losses globally; about 25% of crops are affected annually from mycotoxins. Currently, the presence of mycotoxins, particularly aflatoxins in rice is a subject of considerable research interest. Aim of study was determination of total aflatoxin in imported and cultivated rice in Mazandaran province.

Materials and methods: In this cross sectional study, a total of 159 samples of domestic cultivated and imported rice gathered from Mazandaran distribution centers, evaluated for total Aflatoxin according to ISIRI NO. 5925, using Eliza method.

Results: The mean concentration of aflatoxin was 7.46 ng/g. Aflatoxin content in only 5.3% samples (1 sample) was higher than permitted level by Institute of Standards and Industrial Research of Iran. Higher and lower content were 48 and 1.42 ng/g respectively.

Conclusion: The results show that the levels of the aflatoxin in most rice samples was below regulatory limits that indicates total Aflatoxin in on sale rice in Mazandaran province, is not considered a threat to food security. Maintaining of this safety needs to control of storage condition of rice in different seasons and a continuous monitoring program.

References:
3. Food & Feed- Mycotoxins- Maximum Tolerated Level. Institute of Standards and Industrial Research of Iran. NO 5925, 1th, 2002
ИЗУЧЕНИЕ ОСНОВНЫХ БИОЛОГИЧЕСКИХ СВОЙСТВ БАКТЕРИОФАГА BACILLUS ANTRACIS
THE STUDY OF THE BASIC BIOLOGICAL PROPERTIES OF BACTEROIOPHAGES BACILLUS ANTHRACIS

Феоктистова Н.А., Васильев Д.А., Белова К.В., Лыдина М.А., Климушкин Е.И.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
Алешкин А.В.
ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора, Москва, Россия
ugsha@yandex.ru

Ключевые слова: биоконтроль, бактериофаги, эпизоотии.

Снижение заболеваемостью сибирской язвой в настоящее время не расценивается эпизоотологами и эпидемиологами, как благополучная ситуация. В настоящее время регистрируются эпизоотии среди животных и эпидемические очаги среди населения [5].

Цитируя академика Б.Л. Черкасского, известно, что основой оценки любого риска, в т.ч. и эпидемиологического, является характеристика опасности. Именно опасность, представляет собой источник или фундамент риска и позволяет оценивать сам риск, а соответственно, прогнозировать эпидемиологическую ситуацию [1].

Достижения современной биологической науки, позволяют на сегодняшний день совершенствовать методологические приемы и алгоритмы действий для оценки эпизоотологической и эпидемиологической опасности сибиреязвенных источников, находящихся на территории РФ с учетом достижений современной науки [5]. Согласно методическим указаниям по лабораторной диагностике сибирской язвы у животных и людей, а также для обнаружения данного возбудителя в сырые животного происхождения и объектах внешней среды ранее использовали ветеринарные биопрепараты: «Бактериофаг сибиреязвенный «К» ВИЭВ» (ТУ 46-21-123-75), «Бактериофаг сибиреязвенный «Гамма-МВА» (ТУ 46-21-181-75), ныне применяют «Бактериофаг ВНИИВВиМ сибиреязвенный диагностический» (ТУ 10-09.39-90) [1], «Бактериофаг диагностический сибиреязвенный Гамма А-26 жидкий» ТУ 9386-013-01897080-2009, диагностическая эффективность которых, по мнению авторов, и в настоящий момент не подлежит сомнению. Однако, выделение новых бактериофагов, специфичных к возбудителю сибирской язвы, и изучение их биологических свойств, позволит не только расширить знания в области биологии фагов, но и в дальнейшем сконструировать новый биопрепарат с более широким спектром действия по сравнению с аналогами.

Новый сибиреязвенный фаговый биопрепарат позволит выявлять возбудитель сибирской язвы, так как широкое применение в медицине антибиотиков, инактивированных и живых вакцин привело к реверсии и длительной персистенции вакцинных штаммов в макроорганизме, загрязнению окружающей среды живыми микроорганизмами с измененными свойствами, циркуляции атипичных штаммов, которые не поддаются диагностике антраксин-кожным тестом, генотипическими и бактериологическими методами [2].

162
Целью наших исследований было изучение основных биологических свойств бактериофага Bacillus anthracis.

Задачи исследований:
- изучение литической активности сибиреязвенного бактериофага,
- определение спектра литической активности сибиреязвенного бактериофага,
- выявление специфичности действия сибиреязвенного бактериофага,
- изучение изменения показателей литической активности сибиреязвенного бактериофага при хранении.

Материалы и методы исследований. Вакцинные штаммы Bacillus anthracis-СТИ и Bacillus anthracis 55-ВНИИВВиМ, авирулентные штаммы Bacillus anthracis – Шуя-15 и Bacillus anthracis 34 F2, 12 штаммов бактерии Bacillus mycoides, 52 штамма бактерий Bacillus cereus и Bacillus thuringiensis, Bacillus subtilis – 6 штаммов, Bacillus mesentericus (pumilus) – 8 штаммов, Bacillus coagulans – 3 штамма, полученные из музея НИИЦМиБ ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина».

Сибиреязвенный бактериофаг, выделенный и селекционированный авторами в 2015 году.

Изучение биологических свойств бактериофагов проводили с использованием методик, опробированных сотрудниками кафедры микробиологии, вирусологии, эпизоотологии и ВСЭ ФГБОУ ВО «Ульяновская ГСХА» при изучении биологических свойств бактериофагов рода Bacillus [3-4,6-9].

Результаты исследования и выводы. Литическая активность бактериофага определяли методом титрования на жидкой (метод Аппельмана) и плотной питательной среде (метод агаровых слоев).

За титр бактериофага при определении методом Аппельмана принимали то наибольшее разведение его, которое вызывает полное растворение соответствующих микроорганизмов – Bacillus anthracis – Шуя-15. Экспериментальным путем установлено, что литическая активность изучаемого бактериофага данным методом составила 10^-7. Проведя изучение данного свойства бактериофага методом агаровых слоев, нами установлено, что литическая активность составила 1,0x10^8±0,1x10^8 БОЕ (бляшкообразующих единиц) /мл.

Важной характеристикой фага Bacillus anthracis является спектр литического действия в пределах вида. Для изучения данного показателя использовали 4 штамма бактерий Bacillus anthracis (Bacillus anthracis-СТИ, Bacillus anthracis 55-ВНИИВВиМ, Bacillus anthracis-Шуя-15 и Bacillus anthracis 34 F2). Применялась методика «стекающая капля». Опыт демонстрирует, что спектр литического действия на четырех штаммах составляет 100 %.

Важнейшей характеристикой фага, входящего в состав биопрепарата для индикации и идентификации бактерий, является его специфичность в пределах вида. Изучение специфичности выделенного бактериофага Bacillus anthracis мы проводили на культурах гомологичного рода: Bacillus mycoides – 12 штаммов, Bacillus cereus – 50 штаммов, Bacillus thuringiensis – 2 штамма, Bacillus subtilis – 6 штаммов, Bacillus mesentericus (pumilus) – 8 штаммов, Bacillus coagulans – 3 штамма. Наиболее важной для нас характеристикой выделенного фага была специфичность по отношению к штаммам Bacillus anthracis и отсутствие способности лизировать культуры Bacillus mycoides, Bacillus cereus, Bacillus
thuringiensis, которые составляют группу близкородственной ассоциации бацилл, получивших в литературе название «группа «Bacillus cereus»» [10].

Исследования проводили методом нанесения фага на газон бактериальной культуры методом «стекающая капля». Экспериментальным путем нами установлено, что на чашках Петри, засеянных культурами Bacillus subtilis, Bacillus mycoides, Bacillus megaterium, Bacillus cereus, Bacillus thuringiensis, Bacillus mesentericus (pumilus), Bacillus coagulans, зон лизиса, при нанесении выделенного и селекционированного нами сибиреязвенного фага на газон вышеназванных культур, обнаружено при визуальном осмотре не было. Полученные результаты свидетельствуют, что выделенный и селекционированный нами бактериофаг, строго специфичен в пределах вида Bacillus anthracis и может входить в состав биопрепарата для индикации и идентификации возбудителя сибирской язвы.

Опытным путем установлено, что в течение 3 месяцев показатели литической активности исследуемого бактериофага остались без изменений, 1,0х10^8±0,1х10^8 БОЕ в 1 мл фаголизата. Исследования сибиреязвенного бактериофага, укупоренного в стерильные флаконы без добавления консерванта, который хранился в условиях бытового холодильника (2-4 С) проводили методом агаровых слоев.

Проведенные исследования по изучению биологических свойств сибиреязвенного бактериофага показали, что изучаемый бактериофаг имеет литическую активность - 1,0х108±0,1х108 БОЕ в 1 мл фаголизата, которая не изменяется при хранении в условиях бытового холодильника (2-4 0С) без добавления консерванта.

Установлено, что выделенный и селекционированный нами бактериофаг строго специфичен в пределах вида Bacillus anthracis и не лизирует культуры Bacillus subtilis, Bacillus mycoides, Bacillus megaterium, Bacillus cereus, Bacillus thuringiensis, Bacillus mesentericus (pumilus), Bacillus coagulans. Выше названные характеристики сибиреязвенного бактериофага, выделенного и селекционированного авторами в 2015 году, свидетельствуют, что он может быть использован для конструирования биопрепарата для фагоиндикации и фагоидентификации бактерий Bacillus anthracis в объектах санитарного надзора.

Научные исследования проводятся при финансовой поддержке государства в лице Фонда содействия развитию малых форм предприятий в научно-технической сфере (программа «УМНИК»).

Библиография:

АЛГОРИТМ ФАГОТИПИРОВАНИЯ БАКТЕРИЙ BACILLUS CEREUS
ALGORITHM FOR PHAGE TYPING OF BACTERIA BACILLUS CEREUS

Калдыркаев А.И., Васильев Д.А., Феоктистова Н.А., Лыдина М.А.
Ульяновская ГСХА им. П.А. Стольпина, Ульяновск, Россия
Юдина Т.Г.
Московский государственный университет имени М.В. Ломоносова, Москва, Россия
Климентова Е.Г.
Ульяновский государственный университет, Ульяновск, Россия
ugsha@yandex.ru

Ключевые слова: биоконтроль, бактериофаги, биопрепараты.

Микробиологические процессы вызывают порчу пищевого сырья и продуктов питания, существенно снижают их качество, делают невозможным использование их по назначению или снижают надежность. Коллектив авторов в течение десяти лет занимается выделением и изучением биологических свойств бактериофагов, специфичных к бактериям Bacillus cereus. Данный вид микроорганизмов вызывает пищевые токсикоинфекции у человека (включая рвотный и диарейный синдром), продуцирует энтеротоксины. Источником инфекции являются почва и продукты питания животного и растительного происхождения [3].

Практическое применение методов дифференциации бактерий на фаговары (фаготипы) основано на одном из самых важных свойств бактериофагов - специфичности по отношению к микробу-хозяйну. Существует несколько типов схем для разделения бактерий на фаговары. В Российской Федерации осуществляют фаготипирование сальмонелл и листерий с использованием типовых бактериофагов. Прямой метод типирования позволяет штаммы бактерий разделить на фаготипы по свойствам в зависимости от свойств фагов. Пользуясь особенностью фаговой «метки», можно распознать эпизоотически родственные штаммы бактерий, проследить происхождение и распространение бактерий [1, 2, 6].

Выделенные нами фаги Bacillus cereus качественно отличаются друг от друга по диапазону литического действия и морфологии негативных колоний [7].

В результате изучения спектра литической активности фагов, было выявлено, что по отдельности фаги имеют малый диапазон литического действия 0,9 - 12,4 %. В целом же фаги в количестве 57 шт. имели лизис 88,6%. При этом большинство выделенных штаммов Bacillus cereus лизировались определенным «своим» фагом из 57 имеющихся. Поэтому для анализа диапазона литического действия каждого из фагов по отношению к культурам Bacillus cereus, была составлена схема, по которой удалось выявить взаимосвязь фагов с определенными штаммами бактерий, то есть привязанность фагов к определенным штаммам, группам штаммов бактерий. В результате проведенных исследований, была выявлена особенность селекционированных бактериофагов, связанная с избирательным лизисом тестируемых штаммов бацилл, позволявшая объединить бактериофаги и бактерии во взаимосвязанные группы. Перекрест фагов не допускался, каждый фаг имел лизис строго внутри своей группы.
фаговаров. Фаг, обладающий более широким диапазоном литического действия, исключался и далее не рассматривался. В результате такого отбора были исключены фаги FBc – 2; 5; 13; 29; 39; 53;54 серии УГСХА. Таким образом, отобранные фаги были разделены на 18 групп. В последующем, на их основе мы разработали схему фаготипирования, позволяющую идентифицировать бактерии Bacillus cereus на 18 фагов [4, 5].

Алгоритм фаготипирования может быть представлен следующим образом: чашку Петри делят бактериологическим карандашом на сектора, предварительно нумеруя группы бактериофага наносимого на газон. На поверхность мясопептонного агара засеянного газоном исследуемой культуры пипеткой в намеченный сектор наносят каплю фага, дав ей впитаться в поверхность газона. В каждой чашке обязательно оставляют сектор, на который аналогичным образом наносится мясо-пептонный бульон (для контроля). Результат учитывают по лизису исследуемой культуры.

Лизируемые культуры сравнивали со схемой фаготипирования, тестируемому штамму бацилл присваивается название группы фага, которой он лизируется (например, фаговар 1-Тип Вс - № штамма).

Из отобранных фагов изготовлен набор из 18 фаговых биопрепаратов для проведения фаготипирования Bacillus cereus. Для этого нами разработаны технологические параметры изготовления и контроля типовых бактериофагов Bacillus cereus.

Для конструирования опытных образцов фаговых биопрепаратов было отобран 31 бактериофаг бактерий Bacillus cereus серии УГСХА. Основными критериями отбора служили: спектр литической активности, специфичность и морфология негативных колоний. Перечисленные бактериофаги согласно предложенной выше схеме фаготипирования, были разделены на 18 групп, от 1 до 3 фагов серии УГСХА в каждой. Как было показано выше, изоляты бактериофагов образуют не однородные негативные колонии, всего выделено 4 типа колоний диаметром 0,5 – 8,0 мм, литическая активность фагов составляет от 10-5 до 10-10 по методу Аппельмана и от 1,8×107 ± 0,4×107 до 4×1012± 1,8×1012 БОЕ/мл по методу Грациа. Фаги являются специфичными для бактерий Bacillus cereus и не лизируют бактерии гетерологических родов и видов. Спектр литической активности выделенных фагов варьировал 0,9 до 12,4 %.

В виду вариабельности биологических свойств селекционированных бактериофагов было предложено изготавливать каждый из них в отдельности и смешивать перед фасовкой по флаконам.

В результате проведенных исследований была разработана следующая технология производства биопрепарата: получение биологического сырья для изготовления биопрепарата (подготовка индикаторных культур бактерий Bacillus cereus и подготовка специфических фагов Bacillus cereus); определение биологической активности полученного сырья (концентрации бактерий, литической активности и титра бактериофага); расчет оптимальных соотношений индикаторной бактериальной культуры и фага, с учетом температуры и времени культивирования; стерилизующая фильтрация фаголизата, с целью получения отдельных штаммов бактериофагов (31 фаг); составление линейки из 18 наборов диагностических фаговых биопрепаратов - смешивание штаммов с учетом фагогрупп; розлив суспензии фагов во флаконы...
(ампулы); контроль биопрепаратов (проверка специфичности, спектра литической активности бактериофагов, стерильности и т.д.).

Качество изготовленных биопрепаратов 1-Фаг Вс - 18-Фаг Вс определяли по следующим показателям: внешнему виду, микробиологической чистоте, литической активности (титру), спектру литической активности и специфичности. Количество контролируемых образцов зависело от объема партии готовой продукции, но не могло составлять менее 3 штук каждого из 18 биопрепаратов. Соответствие внешнего вида готового продукта определяли визуально. Индикаторный фаг не может содержать посторонних примесей, фаголизат должен быть прозрачным, светло-желтого или желтого цвета. Стерильность каждой партии биопрепаратов подтверждалась отсутствием роста бактериальной микрофлоры (в том числе баццил), дрожжей и плесневых грибов на селективных питательных средах в течение установленного срока (5 суток). Оценку литической активности 31 штамма фага проводили по методу Грациа, на эталонной культуре соответствующей каждому штамму бактериофага. Препарат считали годным, если содержание фаговых частиц было на уровне не ниже 108 в 1 мл. Спектр литического действия и специфичность фаговых биопрепаратов определяли по методике, изложенной в разделе «Разработка оптимальной схемы выделения бактериофагов Bacillus cereus и изучение их основных биологических свойств» и оценивали на соответствие исходным штаммам, составлявшим каждую композицию. Дату изготовления серии исчисляли со дня закупорки флаконов. Срок годности диагностических наборов бактериофагов при температуре 2–4 °C, в течение которого не происходило снижения уровня литической активности биопрепаратов, устанавливали экспериментальным путем. Препарат оставался годным в течение 12 месяцев после фасовки.

Применяя фаговые биопрепараты на основе бациллярных бактериофагов в различных методиках (реакция нарастания титра фага, реакция адсорбции фагов, фаготетразоловый метод, пробирочный метод, метод «стекающей капли») можно осуществлять контроль параметров технологического процесса изготовления продуктов питания, анализировать качественный и количественный состав выделенных из сырья баццил, являющихся причиной порчи продуктов питания, пищевых отравлений, вызванных Bacillus cereus, разрабатывать контрольные меры для их ликвидации. Вышеуказанные методики, в отличие от классических и усовершенствованных бактериологических занимают значительно меньше времени (максимально 25 часов), что, чрезвычайно важно, для исключения рисков их возникновения или уменьшения возможности присутствия до приемлемого уровня [8, 9, 10].

Библиография:

РАЗРАБОТКА СИСТЕМЫ БИОКОНТРОЛЯ ПИЩЕВОЙ ИНФЕКЦИИ, ВЫЗВАННОЙ БАКТЕРИЯМИ ВИДА LISTERIA MONOCYTOGENES
DEVELOPMENT OF FOOD BIOCONTROL OF INFECTIONS CAUSED BY LISTERIA MONOCYTOGENES

Ковалева Е.Н., Васильев Д.А.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
new2706@yandex.ru

Ключевые слова: пищевой листериоз, биоконтроль, мультиплексная ПЦР, фаготипирование.

Пищевой листериоз – инфекционное заболевание, вызываемое патогенными представителями рода Listeria, характеризуется множеством источников и резервуаров инфекции, разнообразием путей и факторов передачи возбудителя, полиморфизмом клинических проявлений, высокой летальностью у новорожденных и лиц с иммунодефицитами [1]. Продукты питания могут быть контамированы листериями из-за некачественного пищевого сырья, используемого в процессе приготовления пищи. В первую очередь вызывают опасение те продукты, которые употребляются в необработанном виде – охлажденные свежие салаты, овощи, фрукты, молочные продукты и др [1,2].

Для облегчения эпидемиологической работы по обнаружению и слежению за листериозными инфекциями необходимо знать маркеры штаммов Listeria [3,4].

Целью нашей работы является проведение исследований, направленных на создание комплексной системы биоконтроля пищевого листериоза. В качестве компонентов системы могут выступать как методы молекулярно-генетической детекции возбудителя (мультиплексная ПЦР), так и фаготипирование (специфические листериозные бактериофаги).

В результате экспериментов нами определены праймеры и флуоресцентные зонды с красителями R6G и Fam для L.monocytogenes и L.ivanovii соответственно. В процессе оптимизации программы амплификации была доказана специфичность праймеров и олигонуклеотидных проб для указанных возбудителей. Мультиплексный формат ПЦР в режиме “реального времени” позволяет проводить одновременную амплификацию и детекцию L.monocytogenes и L.ivanovii в одной пробирке при использовании двухканальных термокамер (Fam и Hex).

Таким образом, определена возможность применения комплексной системы (мультиплексная ПЦР, фаготипирование) биоконтроля пищевого листериоза.
Библиография:
3. Ковалева, Е.Н. К вопросу фаготипирования листерий / Е.Н. Ковалева, Д.А. Васильев // Биология в сельском хозяйстве, 2(7), 2015. – С.59-61
индикации бактерий рода Bacillus в молоке методом реакции нарастания титра фага

indicating bacillus bacteria in milk by phage titer increase reaction

Лыдина М.А., Феоктистова Н.А., Васильев Д.А., Золотухин С.Н., Петрукова Н.А.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
Алешкин А.В.
ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора, Москва, Россия
ugsha@yandex.ru

Ключевые слова: титр фага, бактерии, индикация, молочные продукты.

По литературным данным спорообразующие бактерии рода Bacillus (Bacillus subtilis, Bacillus mesentericus (pumilus), Bacillus megaterium, Bacillus cereus, Bacillus mycoides,) являются одним из этиологических факторов биологического разрушения продуктов питания, в том числе молока. Наличие у бацилл спор препятствует инактивации этих микроорганизмов после кратковременного термического воздействия, а выраженная их протеолитическая активность приводит к различным порокам. При размножении в диапазоне температур 28-370С вышеназванные бактерии придают молоку и молочным продуктам специфический вяжущий вкус, запах порченых фруктов, дрожжевой привкус, полынную и хинную горечь и изменяют цвет. Установлено, что в условиях холодильного хранения процессы порчи идут аналогично, но значительно медленнее [1-4, 8].

Анализ нормативно-технической документации (ГОСТов и СанПиНов) свидетельствует о том, что в настоящее время для молочных продуктов споровые факультативно-анаэробные микроорганизмы, которыми являются бациллы, не являются санитарно-показательными, поэтому их наличие не нормируется и не подлежит обязательному контролю в условиях производственных лабораторий. Однако при появлении ряда характерных пороков вкуса и внешнего вида у молочных продуктов для бактериологического контроля рекомендуется делать посевы 2-4-кратно разведенного продукта на наличие указанной неспецифической микрофлоры [8].

Своевременное качественное и количественное обнаружение этих микроорганизмов поможет предотвратить негативные процессы. Поэтому разработка методов детекции бактерий рода Bacillus в молоке и молочных продуктах является той практической задачей, которую необходимо решать в пищевой и перерабатывающей промышленности. Эффективность использования бактериофагов в сельском хозяйстве для снижения порчи продуктов, вызванной различными бактериями, это относительно малоизученная область biology. Применение бактериофагов довольно многообразно и включает ряд методов: мониторинг на наличие специфических организмов гниения (SSO – specific spoilage organisms), к которым относятся и вышеназванные бактерии рода Bacillus, обработку пищевого сырья и готовых продуктов питания и т.п. [5].

Использование для этих целей тест-систем полимеразно-цепной реакции ограничено по нескольким причинам: отсутствие коммерческих праймеров на многие виды рода Bacillus, дорогостоящее оборудование и расходные материалы,
отсутствие квалифицированных специалистов. Применение бактериологического метода исследований для этих целей затруднено в связи с отсутствием соответствующей современной нормативно-технической документации, позволяющей проводить идентификацию бацилл [1, 2].

Цель и задачи исследования. Разработать метод индикации бактерий Bacillus mycoides, Bacillus subtilis, Bacillus mesentericus (pumilus), Bacillus megaterium с применением фаговых биопрепаратов, который позволит в течение 25-26 часов определить бракеражную концентрацию вышеназванных бактерий (103 КОЕ/мл – колониеобразующих единиц на 1 миллилитр) в молоке-сыре [8].

Для достижения поставленной цели необходимо: сконструировать экспериментальные биопрепараты на основе выделенных и селекционированных специфических бактериофагов Bacillus mycoides, Bacillus subtilis, Bacillus mesentericus (pumilus), Bacillus megaterium; определить оптимальные параметры постановки реакции нарастания титра фага с экспериментальными биопрепаратами; разработать схему по постановке реакции нарастания титра фага с пробами молока с целью обнаружения разных видов бацилл.

Материалы и методы. Штаммы бактерий Bacillus megaterium 182 и Bacillus megaterium 4, Bacillus mesentericus (pumilus) 66 и Bacillus mesentericus (pumilus) 2; Bacillus subtilis 26 и Bacillus subtilis 4, Bacillus mycoides 537 и Bacillus mycoides H были полученные из музея кафедры микробиологии, вирусологии, эпизоотологии и ветериарно-санитарной экспертизы ФГБОУ ВО «Ульяновская ГСХА». Штаммы бактериофагов: Phagum Bacillus megaterium Bm – 1 УГСХА-Деп и Phagum Bacillus megaterium Bm – 1 УГСХА-Деп; Phagum Bacillus subtilis Bs – 13 УГСХА-Деп и Phagum Bacillus subtilis Bs – 16 УГСХА-Деп; Phagum Bacillus mycoides B.myc – 3 УГСХА-Деп и Phagum Bacillus mycoides B.myc–5 УГСХА-Деп; Phagum Bacillus mesentericus (pumilus) Bm – 3 УГСХА-Деп и Phagum Bacillus mesentericus (pumilus) Bm – 8 УГСХА-Деп, выделены и изучены нами ранее [7, 9-12]. Объекты исследования – пробы молока.

Метод индикации бактерий Bacillus mycoides, Bacillus subtilis, Bacillus mesentericus (pumilus), Bacillus megaterium с использованием фагового биопрепарата разрабатывали на основе методики реакции нарастания титра фага [6, 7, 9, 12]. Статистическую обработку результатов исследований проводили с применением пакета прикладных программ Statistica 6.0. (for Windows; «Stat Soft Ins.», США), Microsoft Exsel 2003 (for Windows XP).

Первым этапом конструирования биопрепаратов для индикации бактерий рода Bacillus нами был осуществлен подбор фагов, специфичных в пределах каждого вида (для Bacillus mycoides – Phagum Bacillus mycoides B.myc. серии УГСХА; для Bacillus subtilis – Phagum Bacillus subtilis B.s. серии УГСХА; для Bacillus mesentericus (pumilus) – Phagum Bacillus mesentericus (pumilus) Bm. серии УГСХА); для Bacillus megaterium – Phagum Bacillus megaterium B.meg. серии УГСХА. Выбранные фаги характеризовались высокими показателями литической активности и максимально широким совместным спектром литического действия в пределах гомологичного вида [7, 9, 12]. Экспериментальные биопрепараты готовили на основе коммерческого питательного бульона при температуре 37 0C. В результате проведенных исследований нами было определено оптимальное соотношение бактериофага и индикаторной культуры – 1:1, т.е. 0,2 мл фага и 0,2 мл индикаторной культуры (для фагов Bacillus subtilis, Bacillus mesentericus
(pumilus), Bacillus megaterium), 1:5 (для фагов Bacillus mycoides), время пассажа составило 6-7 часов.

Очистку готовых фаговых препаратов от бактериальных клеток производили методом фильтрации с использованием мембранных фильтров фирмы Millipore (filter type: 0,22 µm GV). Разлитый в флякеты фаг подвергали контролю на чистоту, стерильность и литическую активность. Биопрепараты на основе фагов Bacillus представляют собой флякеты с прозрачной жидкостью желтого цвета (цвет засеянной среды) без посторонних примесей и наличия осадка. Литическая активность на плотных питательных средах составила 109 БОЕ/мл. Дата изготовления серии бактериофагов исчисляется со дня закупорки флаконов. Экспериментальным путем установлено, что срок годности биопрепаратов на основе бациллярных фагов при температуре 2-4 0С составляет 12 месяцев (срок наблюдения).

На втором этапе были проведены исследования по постановке реакции нарастания титра фага с мясо-пептонным бульоном (МПБ), искусственно контаминированных 18 часовым индикаторными культурами бацилл каждого вида в концентрации 103 КОЕ/мл. В качестве контроля применяли стерильный МПБ. Для каждого бациллярного бактериофага в эксперименте использовали по три комплекта из 3 пробирок. В пробирки № 1 и № 2 вносили исследуемый материал (в данном случае это МПБ, концентрированный 18-часовой индикаторной культурой) объемом 9 мл. В пробирку № 3 вносили 9 мл стерильного МПБ. Затем в пробирки № 1 и № 3 добавляли по 1 мл бактериофага в концентрации 104 БОЕ/мл, в пробирку № 2 вносили 1 мл стерильного МПБ и помещали в термостат (37 0С) на 7 часов. После подращивания исследуемого материала вместе с бактериофагом из каждой пробирки брали по 0,25 мл и вносили в пробирки с 4,5 мл МПБ. Содержимое всех пробирок фильтровали и подвергали дальнейшему исследованию методом агаровых слоев по Грациа [5].

В результате опытов нами установлено, что при положительной реакции количество бляшкообразующих единиц в опыте превышало более чем в 5 раз количество бляшкообразующих единиц в контролье [1]. Время, затраченное на детекцию бацилл с помощью изготовленных фаговых препаратов, составило 26 часов (0,5 часа – подготовка реакции + 7 часов – время экспозиции субстрата с фагом + 0,5 часа – время, затрачиваемое на постановку эксперимента + 18 часов – время термостатирования посевов).

Третьим этапом наших исследований стала разработка схемы постановки РНФ для индикации выше перечисленных бацилл с использованием фаговых биопрепаратов в молоке-сырье. Для постановки эксперимента было исследовано 3 пробы молока, которые были использованы для определения концентрации бактерий рода Bacillus, которую возможно определить в молоке, используя РНФ с применением гомологичных бактериофагов. Пробу молока в объеме 10 мл вносили в колбу со МПБ (соотношение 1:10) и искусственно контаменировали 18-часовым штаммом Bacillus каждого вида в концентрации 103 КОЕ/мл.

Результаты проведенных исследований по индикации бактерий рода Bacillus в искусственно контаменированных пробах молока свидетельствуют о том, что постановка РНФ для обнаружения данных бактерий показала значительную экономию времени (26 часов) в сравнении с бактериологическим методом исследования (96 часов), чувствительность которого не позволяет обнаружить бациллы всех вышеперечисленных видов. Исходя из выше изложенного и
учитывая результаты исследований, полученных нами ранее, разработанный метод биосенсорной детекции Bacillus megaterium, Bacillus mycoides, Bacillus subtilis, Bacillus mesentericus (pumilus) с применением выделенных и селекционированных специфических в пределах вида бактериофагов, может быть с успехом использован на этапе приемочного контроля качества молока-сыря.

Библиография:
КОНСТРУИРОВАНИЕ СЕЛЕКТИВНОЙ СРЕДЫ ДЛЯ ИДЕНТИФИКАЦИИ A. HYDROPHILA
CONSTRUCTION OF SELECTIVE MEDIUM FOR THE IDENTIFICATION OF A. HYDROPHILA

Мерчина С.В., Молофеева Н.И., Барт Н.Г.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
ugsha@yandex.ru

Ключевые слова: бактерии, идентификация, среды.

Аэромонады (Aeromonas) - род изогнутых палочковидных, кокковидных или нитевидных аспорогенных, монотрихиальных хемоорганотрофных факультативно-анаэробных грамотрицательных эубактерий. Растут при 20-30°С, pH 7,0, на простых питательных средах.

Бактерии различных видов рода Aeromonas недостаточно изучены. Обладаю схожими свойствами по культуральным, морфологическим, биохимическим и другим показателям, они затрудняют видовую дифференциацию, а от полученных результатов зависит санитарная оценка пищевого продукта контаминированного изучаемым микроорганизмом [2].

В первую очередь, для идентификации, целесообразно применять следующие тесты, дифференцирующие бактерии A. hydrophila: морфология с окраской по Граму, ОФ-тест, т. е. тип расщепления глюкозы – окисление (О) или ферментация (F), определение ферментов в тестах на цитохромоксидазу и нитратредуктазу (редукция нитратов в нитриты). Имеются данные о том, что аэромонады, обладая психрофильными свойствами, способны сохраняться в контаминированных ими продуктах, таких как говядина, ростбиф, свинина и др., находящихся в бытовых холодильниках при 2 - 10°С. Более того, температура +5 °С благоприятствует их размножению и продуцированию вирулентных факторов. Порча продуктов питания обусловлена наличием у микроорганизмов рода Aeromonas экзоэнзимов. Ин. В винной продукции в первые 5 минут инактивируется до 50 % бактерий, и через 24 ч в данном субстрате сохраняется до 33% аэромонад [3].

Единственным нормативным документом в России по методам идентификации аэромонад в различных видах исследуемого материала является Методические рекомендации «Методы исследований объектов окружающей среды и патологического материала на аэромонады», разработанные в Московском научно-исследовательском институте гигиены им. Ф.Ф. Эрисмана в 1980 году.

При изучении биологических свойств бактерий A. hydrophila мы определяли их температурную устойчивость. Наблюдали следующие результаты: рост бактерий A. hydrophila 7966 АТСС при –4°С не обнаруживался, но при высевании из пробирок с замороженными бульбонными культурами на агар и инкубации чашек в термостате при оптимальной температуре (30°С), отмечался характерный рост бактерий A. hydrophila 7966 АТСС. При температуре +5°С в пробирках было помутнение спустя 48 часов, в то время как на чашках, вырастали мелкие колонии уже через 24 часа. Температура +30°С является оптимальной для роста бактерий A.hydrophila 7966, спустя 24 часа в пробирках имелось...
характерное помутнение, а на чашках с TSA рост округлых, с ровными краями, светло-бежевых колоний, до 3 мм в диаметре. Температура +41°C считается уже не приемлемой для роста аэромонад. Однако, референс-штамм также имел характерный рост на данных средах, спустя 24 часа. А вот при температуре +45°C роста не наблюдалось. Все 10 выделенных нами штаммов росли при данных температурных показателях, как в пробирках с бульоном, так и на чашках с агаром. Эти данные необходимо учитывать при дифференциальной диагностике бактерий A. hydrophila. [3]

Продолжительность жизнедеятельности указанного микроорганизма в воде достигает 60 дней и зависит от содержания других бактерий; так, например, в присутствии P. aeruginosa она значительно увеличивается [4].

Бактерии A. hydrophila растут в пределах широкого диапазона рН среды 5,5 – 9,0, что объясняется наличием биопленок. Оптимальный рост также, как и оптимальная продукция экзотоксина и экзофермента наблюдается при слабощелочном начальном рН среды.

Аэромонады хорошо ростут на мясо-пептонном бульоне (МПБ) при 37С. На мясо-пептонном агаре (МПА) данные бактерии образуют выпуклые, округлые, блестящие, полупрозрачные с беловато-желтым оттенком колонии. Однако при исследовании материала содержащего обильную смешанную микрофлору идентификация A. hydrophila на этих средах затруднена.

По результатам проведенных исследований мы предлагаем среду для накопления A. hydrophila следующего состава: вода дистиллированная – 1000 мл, дрожжевой экстракт – 4,0 г, мальтоза – 3,5 г, MgSO4 – 5,0 г, K2HPO4 – 2,0 г, желатин – 50,0 г, конго-рот – 3,0 г, кристаллический фиолетовый – 0,1 г.[5]

Питательной основой этой среды является дрожжевой экстракт и мальтоза (по 4,0 г и 3,5 г соответственно). Минеральной базой для A.hydrophila является набор солей фосфата калия двузамещенного (2,0г) и семиводного сульфата магния (5,0г). Соли калия, магния и фосфора стимулируют синтез микробной клетки A. hydrophila, а для образования бактери-альных белков необходимы анионы, содержащие серу. Для уплотнения среды, а также во избежание выпадения элективного агента в осадок и равномерного распространения его во всей среде добавляется желатин (5%), кроме того желатин является растворимым белком. Бактерии A. hydrophila обладают протеолитической активностью и способны разжижать желатин, что можно использовать как показателем дифференциации. Красители выступают в качестве элективного агента.

В рамках наших исследований мы изучали специфичность действия трёх селективных сред, A2, TBA с ампициллином, среда Шмита-Шантелье. Специфичность определяли по спектру подавления роста ассоциантов (Ps. aeruginosa, Ps. putida; P. mirabilis; Citrobacter; E. coli; M. morganii; P.vulgaris; Kl. pneumoniae; Enterobacter; P. multocida; Pr. rettgeri; Y. enterocolitica). Посев производили из суточных культур бактерий, культивировали при 37°С в течение 24 часов. Контроль производили на МПА. Испытанные среды обладают специфичностью, но имеется возможность роста ассоциантов. Отсутствие надежных ингибиторов в среде A2 позволяет выживать и расти на ней большинству бактерий из сопутствующей микрофлоры (Ps. aeruginosa, Ps. putida; Citrobacter; E. coli; Kl. pneumoniae; Enterobacter; Pr. rettgeri; Y. enterocolitica). TBA, хотя и содержит элективный агент, все же не обладает высокой специфичностью. Кроме того, TBA с ампициллином пропускает антибиотикочувствительные и
негемолитические штаммы. Отсюда следует, что селективные свойства испытанных сред недостаточны.

В лаборатории кафедры микробиологии, вирусологии, эпизоотологии и ВСЭ Ульяновской ГСХА им. П.А.Столыпина была разработана плотная селективная среда для бактериологической идентификации A.hydrophila. В универсальном варианте селективная среда должна удовлетворять следующим требованиям: обеспечивать рост максимального количества штаммов конкретного вида микроорганизма, даже при наличии единичных клеток в пробе; полностью подавлять рост любых видов сопутствующей микрофлоры; не изменять видовые свойства ис-следуемого микроорганизма; быть простой в изготовлении и не содержать дефицитных или дорогостоящих компонентов. Состав плотной селективной среды (прототипом которой послужила выше приведенная среда накопления), следующий: вода дистиллированная – 1000 мл, агар-агар – 15 г, дрожжевой экстракт – 4,0 г, мальтоза – 3,5 г, K2HPO4– 2,0 г, MgSO4– 5,0 г, желатин – 50,0 г, конго-рот – 3,0 г, кристаллический фиолетовый – 0,1 г. Цвет среды красно-коричневый.

Определение специфичности действия селективной среды является важнейшим из критериев для подобного рода сред [6]. Была проведена серия экспериментов по определению специфичности. Специфичность определялась следующим образом. Брали суточные культуры A. hydrophila; P. aeruginosa, M. morganii; P. vulgaris; K. pneumoniae; Enterobacter; P. vulgaris; P. stutzeri; Y. enterocolitica. Производили посев вышеуказанных бактерий на предлагаемую селективную среду. Культивировали посевы при 37 °C 24 часа [7]. Полученные результаты демонстрируют, что на вторые сутки на изучаемой селективной среде бактерии A. Hydrophila дают характерный рост: округлые, выпуклые, блестящие до 3 мм в диаметре, светло-бежевые, без изменения цвета среды под ними, изучаемые штаммы ассоциантов через 24 часа не дают роста.

Результаты исследований свидетельствуют, что с использованием на предложенных накопительной и селективной сред, бактерии A. Hydrophila растут. Возможные ассоцианты на изученной среде не растут или имеют отличительный рост колоний. Таким образом, предлагаемая нами плотная селективная среда обладает необходимой искомой специфичностью, что необходимо для проведения бактериологической идентификации A. Hydrophila.

Библиография:
2. Васильев, Д.А. Детекция Aeromonas hydrophila в пищевой продукции из гидробионтов с применением биосенсоров основ гомологичных бактериофагов / Д.А. Васильев, Д.А. Викторов, И.Р. Насибуллин [и др.] //Фундаментальные исследования. – 2014. – № 5-1. – c.50-54.

ЭКСПРЕСС-МЕТОД ОПРЕДЕЛЕНИЯ ГЕМОЛИТИЧЕСКОЙ АКТИВНОСТИ БАКТЕРИЙ
EXPRESS-METHOD FOR THE DETERMINATION OF HEMOLYTIC ACTIVITY OF BACTERIA

Мастиленко А.В.
НИИЦМиБ
Сверкалова Д.Г., Васильев Д.А.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
ugsha@yandex.ru

Ключевые слова: экспресс-метод, гемолиз, бактерии.

В практической бактериологии зачастую важно быстро установить наличие гемолитической активности бактериальных культур, так как гемолиз один из важнейших факторов патогенности.

Первоначально метод был разработан для определения гемолитической активности Bordetella bronchiseptica [1], затем опробован на других видах бактерий.

Гемолитическую активность проверяли на штаммах B. bronchiseptica № 8344, B.bronchiseptica № 1, B.bronchiseptica №7, B.bronchiseptica № 214, B.bronchiseptica №22-06, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes, Streptococcus agalactiae из коллекции музея кафедры микробиологии, вирусологии, эпизоотологии и ветеринарно-санитарной экспертизы ФГБОУ ВО «Ульяновская ГСХА им. П.А. Столыпина».

Для проведения работы использовался микроскоп БИОМЕД 6 № 4F 8663200/01, тринокуляр с видеонасадкой ДСМ 130 (1,3 м pixels, USB 20) и программным обеспечением; термостат ТС-80М-2; покровные и предметные стекла с лункой по ГОСТ 9284-75, бактериологическая петля Ø = 2 мм, масло иммерсионное nd = 1,515±0,002; ng = nc = 0,0106±0,0003, t=20°C±2°.

Для подтверждения наличия гемолитической активности изучаемых штаммов бактерий, пользовались стандартной методикой определения гемолиза с помощью кровяного агара с 10% содержанием дефибринированной крови человека.

Препарат для микроскопии готовили методом "висячая капля".

Гемолитическую активность штаммов наблюдали в поле зрения микроскопа БИОМЕД 6 № 4F 8663200/01 в течение 20 - 30 минут. Для микроскопии готовили препарат следующим образом. Готовилось разведение крови или эритроцитарной массы в стерильном физиологическом растворе, с таким расчетом, чтобы полученный раствор содержал в 1 мл не более 2×104 эритроцитов. Эритроцитарную взвесь в физиологическом растворе наносили пипеткой на предварительно обезжиренное чистое покровное стекло, затем, бактериологической петлей вносили 1-2 суточную агаровую культуру одного из штаммов в каплю физиологического раствора с эритроцитами. Далее готовили препарат по типу "висячая капля", используя предметное стекло с лункой. Наблюдали под увеличением ×1500 с использованием иммерсии, в течение 20-30 минут ассоциион клеток исследуемых бактерий на поверхности эритроцитов и обесцвечивание последних, что свидетельствует о гемолизе. Параллельно каждую
исследуемую культуру высевали “штрихом” на поверхность 10% кровяного агара из той же дефибринированной крови человека, который потом помещали в термостат с температурой 37ºС. Через 24, 48, 72 часа наблюдали рост культур и наличие гемолиза на кровяном агаре у тех же штаммов, у которых наблюдали картину гемолиза эритроцитов под микроскопом нашим методом. В контроле, эритроцит не изменился.
Таким образом, возможно использование данного метода определения гемолитической активности исследуемых видов бактерий в короткие сроки.

Библиография:
ASSESSMENT OF SYNTHETIC COLORS IN THE AQUEOUS EXTRACT OF SAFFRON ON SALE IN MAZANDARAN

Haniyeh Pazoki, Roya Abasi, Laleh Karimzadeh, Hamidreza Mohamadi, Mohamad Hosein Esfahanizadeh
Mazandaran University of Medical Sciences, Sari, Iran
+981133344443, roya.abbasi@ymail.com

Key words: TLC, tartrazine, Quinoline, Sunset Yellow, production license.

Importance of saffron in Iranian food on the one hand and its expensive on the other hand, increase fraud as using artificial colors instead of saffron. Considering adverse effects of artificial colors, this study aimed to investigate the presence artificial color in aqueous extract of saffron in the province.

Materials and methods: A total of 160 sample of saffron aqueous extract gathered from Mazandaran distribution centers, evaluated for isolation and identification of the added synthetic or natural food colures using Thin Layer Chromatography and Spectrophotometer-UV.

Results: 48.75% of samples had artificial coloring among them 11.87% contained non-permitted artificial coloring (Tartrazine) and 24.37% contained permitted artificial coloring (Quinoline) and 12.5% contained permitted artificial coloring (Sunset Yellow). Sunset Yellow coloring was most consumed.

Conclusion: The use of artificial colors, especially non-edible colors is a major problem in food products without health license. High proportion of non-artificial colors, indicate the need for increasing knowledge of users and consumers about adverse effects of artificial colors, employment technical Assistant in non-industrial production centers and assigned production license and health code to them.

References:
5. Institute of standards and Industrial Research of Iran. Permitted food additives Food colors List and general specifications; NO 740. 5th ed. Tehran: ISIRI; 2013 (Persian).
БАКТЕРИОФАГИ CITROBACTER В ОКРУЖАЮЩЕЙ СРЕДЕ
BACTERIOPHAGES OF CITROBACTER IN THE ENVIRONMENT

Пульчеровская Л.П., Васильев Д.А., Золотухин С.Н., Ефрейторова Е.О.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
ugsha@yandex.ru

Ключевые слова: бактерии рода Citrobacter, сточные воды, фаги, питательные среды, негативные колонии, индикаторная культура, литическая активность, специфичность.

Представители рода Citrobacter имеют широко распространение в природе. Их выделяют из объектов окружающей среды, пищевых продуктов и фекалий животных и человека. Некоторые штаммы входят в состав нормальной микрофлоры кишечника.

В то же время представители этого рода способны вызывать вспышки гастроэнтеритов и токсикоинфекций, внутрибольничные инфекции, менингиты, абсцессы мозга, урологические заболевания, гнойные инфекции и даже сепсис у детей и взрослых людей.[6]

Цитробактеры способны также самостоятельно или в ассоциации с другими микроорганизмами вызывать заболевания у домашних и диких животных.

Целью исследований явилось выделение и селекция фагов бактерий рода Citrobacter в объектах внешней среды. Для этого мы отбирали пробы сточных вод, воды открытых водоемов и песка детских песочниц около жилых домов.

Исследуемые пробы вносили в стерильные колбы, заливали МПБ из расчета 10 мл бульона на 1 г/мл. В опытные колбы вносили индикаторные культуры бактерий рода Citrobacter.

Исследование проводили методом агаровых слоев. Использовали МПА, содержащий 1,5%-0,7% агара. Допустимо вместо 1,5% МПА использовать агар на рыбном гидролизате. Мясопептонный агар разливали в чашки по 25-30 мл.

Для подавления роста воздушной микрофлоры перед разливом добавляли к расплавленному агaru 0,04%-ный спиртовой раствор генцианвиолета (0,1 мл на каждые 100 мл МПА). Чашки подсушивали в боксе или термостате в течение 3 часов.

Индикаторные культуры бактерий рода Citrobacter выращивали на скошенном МПА в течение 16 часов и смывали физиологическим раствором (в количестве 10 мл).

При проведении нескольких анализов ставили один контроль. Через 20-30 минут после застывания верхнего слоя агара чашки помещали в термостат на 18-24 часа.

Каждая исследуемая проба испытывалась на наличие фагов ко всем имеющимся культурам Citrobacter.[4,7]

Наличие негативных колоний или зон лизиса на газоне роста индикаторной культуры свидетельствовало о присутствии в исследуемом материале бактериофага. В результате исследований удалось по указанной схеме выявить 3
изолята фагов. Присутствие бактериофагов также свидетельствует присутствии или о недавнем присутствии названных бактерий в исследуемых объектах.

Негативные колонии отивали в МПБ с индикаторными культурами. Для этого, в две пробирки с 4,5 мл мясопептонного бульона (рН 7,4-7,6) добавляли стерильной пипеткой 0,2 мл 18-ти часовой бульонной индикаторной культуры Citrobacter. В одну из пробирок отивали негативную колонию, а вторая пробирка служила контролем. Посевы помещали в термостат и инкубировали их при 37\С до выраженного помутнения контроля. Затем содержимое опытной пробирки освобождали от микробных клеток прогреванием в водяной бане при 58-60\С в течение 30 минут. Прогретый фильтрат переносили стериальной пипеткой в пробирку и использовали для проведения пассирования фага.

Для получения чистой линии фага проводили от 5 до 7 пассажей из изолированных негативных колоний по методике описанной С.Н.Золотухиным (1999). Всего было выделено 3 бактериофага.[3,5]

Выделенные бактериофаги обладали разной литической активностью. Литическая активность бактериофагов оценивается по способности фага вызывать лизис бактериальной культуры в жидких и плотных питательных средах и выражается это тем максимальным разведением, в котором исследуемый бактериофаг проявлял свое литическое действие.

Специфичность исследуемых бактериофагов проверяли на культурах бактерий гетерогенных семейств и родов: Salmonella, Klebsiella, Escherichia, Morganella, Enterobacter, Protei, Y.enterocolitica, Serratia. [2,4]

В результате изучения специфичности выделенных бактериофагов по отношению к представителям других семейств и родов установлено, что данные фаги не лизировали ни одну из испытуемых культур. На основании полученных результатов можно сделать вывод, о том, что выделенные фаги являются специфичными по отношению к бактериям рода Citrobacter и не активны к представителям бактерий других родов и семейств.

Бактериофаги выделенные из сточных вод предприятий, воды открытых водоемов и песка детских песочниц около жилых домов обладали следующей литической активностью: на плотных питательных средах (по методу Грациа) от 1х10^6 до 3х10^9, а в жидкой среде (по Аппельману) от 10^-4 до 10^-8.

Проведенные исследования выделенных нами цитробактерных бактериофагов открывают большие перспективы их использования для конструирования индикаторных и лечебных препаратов.[1,8-11]

Библиография:
1. Ганюшкин, В.Я. Бактериофаги сальмонелл и их применение в ветеринарии. / В.Я. Ганюшкин Учебное пособие. – Ульяновск, 1988. – с. 45-49.
4. Пульчеровская, Л.П. Индикация бактерий рода Citrobacter с помощью реакции нарастания титра фага (РНФ)/ Л.П.Пульчеровская, С.Н.Золотухин,
САРьОВНIIЕТЫЙ АНАЛИЗ БИОЛОГИЧЕСКИХ СВОЙСТВ БАКТЕРИОФАГОВ KLEBSIELLA OXYTOCA
COMPARATIVE ANALYSIS OF THE BIOLOGICAL PROPERTIES OF BACTERIOPHAGES KLEBSIELLA OXYTOCA

Сардтдинова Г.Р., Васильев Д.А., Золотухин С.Н.
Ульяновская ГСХА им. П.А. Столыпина, Ульяновск, Россия
угша@yandex.ru

Ключевые слова: биоконтроль, бактериофаги, инфекции.

Бактерии вида Klebsiella oxytoca, так же как и другой вид klebsiell-Klebsiella pneumoniae, может являться возбудителем пневмонии, заболеваний мочевыводящих путей, мозговых оболочек, суставов, глаз, а также бактериемии и септикопиемии. Бактерии данного вида могут быть причиной острых воспалительных заболеваний слизистой полости рта, таких как стоматит или гингивит, а также спонтанного бактериального перитонита. Известны случаи, когда Klebsiella oxytoca вызывала инфекции антибиотикоассоциированных диарей и антибиотикоассоциированный геморрагический колит. Во многих странах (Германия, Австрия, США) тратятся огромные средства на разработку препаратов, способных бороться с klebsiellами. В связи с тем, что постоянно мутирующие бактерии klebsiell приобретают устойчивость к антибиотикам, эффективность их применения за последние годы ослабла. В последнее время внимание исследователей стали привлекать бактериофаги - вирусы, «пожирающие» бактерии [1].

Исследование заключалось в изучении основных биологических свойств выделенных бактериофагов бактерий вида Klebsiella oxytoca. Сравнительный анализ биологических свойств проводили в отношении двух бактериофагов (K2t-УГСХА, и K4t-УГСХА), выделенных из внешней среды по методике предложенной Адельсоном Л.И.

Устойчивость бактериофагов ко многим инактивирующим факторам внешней среды значительно выше, чем у бактерий. Свойство фагов не снижать лигтическую активность при воздействии температуры (прогревание при которой приводит к инактивации бактерий) или при обработке хлороформом, имеет теоретическое и практическое значение. Поэтому при изучении биологических свойств фагов одним из важных параметров является определение их температурной устойчивости и устойчивости к хлороформу. При выделении бактериофагов (очищение супернатанта) было установлено, что оба фага не устойчивы к хлороформу. Поэтому последующее очищение фаголизата проводили прогреванием на водяной бане при 65°C в течение 30 минут.

Для определения морфологии негативных колоний высевали фаг в разведении 10^-9 степени на чашки методом агаровых слоев. Для формирования газона на поверхности агара использовали индикаторный штамм K. oxytoca 10, на который были выделены фаги. Посевы культивировали в термостате при температуре 37°C. Изучение морфологии негативных колоний проводили через 6, 10, 16, 24 часа. Бактериофаг K2t-УГСХА образует округлые, прозрачные негативные колонии диаметром 1-2 мм, бактериофаг K4t-УГСХА-округлые, прозрачные колонии диаметром 1-1,5 мм [2, 3].
Литическая активность бактериофагов оценивалась по их способности вызывать лизис бактериальных культур в жидких или плотных питательных средах. Индикаторную культуру Кохутоса 10 выращивали на мясо-пептонном бульоне (pH 7,4 – 7,6) при температуре 37С в течение 20 часов. Литическую активность селекционированных фагов определяли по методам Аппельмана (титр фага устанавливали по последней прозрачной пробирке и выражали разведением фага) и Грациа (после инкубации подсчитывали число негативных колоний и умножали на степень разведения).

К основным биологическим свойствам бактериофага, имеющим важное практическое и теоретическое значение, относится и диапазон литической активности –спектр лизиса гомологичных фагу бактерий по серологической группе. Спектр литической активности является характерной особенностью штаммов фага и им пользуются для их идентификации. Для изучения спектра литической активности использовали метод нанесения капель бактериофагов на газон исследуемой культуры. В качестве исследуемых культур использовали музейные штаммы бактерий рода Klebsiella кафедры микробиологии, вирусологии, эпизоотологии и ВСЭ Ульяновской ГСХА им.ПА.Столыпина.

Исследования показали, что изучаемые фаги являются моновалентными, т.е. активными в отношении лишь одного штамма - Кохутоса 10 [4].

Необходимым условием для применения фагов в диагностических целях является отсутствие литического действия в отношении гетерологичных бактерий (специфичность). Видовая специфичность фагов используется в практике для дифференциации бактерий. Изучение специфичности бактериофагов проводили по отношению к представителям других родов семейства Enterobacteriaceae: Escherichia spp., Proteus spp., Hafnia alvei, Citrobacter spp., Salmonella spp., Enterobacter spp., Providensia spp., Yersinia enterocolitica, Yersenia pseudotuberculosis. Определение видовой специфичности бактериофагов проводили нанесением капли на газон культуры. Для этого на поверхность мясопептонного агара в чашках Петри наносили 0,2 мл 20-ти часовой исследуемой культуры. Бактериальную культуру растирали равномерно шпателем по поверхности среды для получения газона. Для подсушивания ставили в термостат на 30 минут. На дне чашек маркером отмечали одинаковые сектора (по 2 сектора на каждой чашке). После подсушивания газона культуры в термостате на поверхность среды наносили капли изучаемых бактериофагов и наклоняли чашки, чтобы капли стекли. Каждый сектор используется для одного фага. В качестве контроля наносили каплю стерильного мясо-пептонного бульона. Оценку результатов проводили через 18 – 20 часов [5].

В результате проведенных исследований нами установлено, что фаги образовывали прозрачные округлые колонии размером 1-2 мм в диаметре. Литическая активность по методу Аппельмана составила 10-5 (К4т-УГСХА) и 10-8 (К2т-УГСХА), а также 2×10^6 до 3×10^8 фаговых корпускул в 1 мл (пог Грациа). Установлено, что данные фаги не вызывали лизис ни одной из испытываемых культур других видов бактерий. На основании полученных результатов можно сделать вывод, о том, что селекционированные фаги являются специфичными по отношению к бактериям вида Кохутоса и не активны к представителям других видов бактерий.
Библиография:
5. Ляшенко Е.А., Васильев Д.А., Золотухин С.Н. Индикация бактерий рода Klebsiella с помощью специфических бактериофагов, в объектах ветеринарного надзора// В сборнике: Бактериофаги: теоретические и практические аспекты применения в медицине, ветеринарии и пищевой промышленности Материалы Международной научно-практической конференции.-2013.-С.36-40.
ИСПОЛЬЗОВАНИЕ АНАЛИЗА ОБОЛОЧКИ ДАННЫХ ДЛЯ ОЦЕНКИ СРАВНИТЕЛЬНОЙ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОРГАНИЗАЦИЙ

USING THE DATA ENVELOPMENT ANALYSIS TO ASSESS THE COMPARATIVE EFFICIENCY OF AGRICULTURAL ORGANIZATIONS

Такун А.П.
Институт системных исследований в АПК Национальной академии наук Беларуси
atakun@mail.ru

Ефремов А.А.
Белорусский государственный экономический университет
andrefrem@tut.by

Ключевые слова: анализ оболочки данных, сельскохозяйственная организация, эффективность.

Парадигма сравнительного анализа применяется в разных отраслях экономической науки достаточно широко. В основе рассматриваемого в данной статье подхода лежит следующее положение: если определённое предприятие, располагающее определённым набором ресурсов, способно обеспечить некоторый экономический результат и поддерживать его на постоянном уровне, то другое предприятие, функционирующее в равноценных условиях хозяйствования и обладающее тем же набором ресурсов, при прочих равных условиях имеет возможность достичь не меньшего экономического результата.

Таким образом, перед исследователем возникает следующая проблема: для данного сельскохозяйственного предприятия А необходимо каким-то образом определить предприятие-ориентир В, фактические показатели которого станут плановыми показателями рассматриваемого предприятия А.

Конечно, эта проблема может быть решена путём привлечения методов экспертных оценок. Но, на наш взгляд, более целесообразно основываться на экономико-математических методах, доказавших свою эффективность в данном направлении. Одним из таких методов является анализ оболочки данных (англ. Data envelopment analysis – DEA).

Методология DEA базируется на математическом аппарате линейного программирования.

В качестве инструментального средства решения задачи обычно используется версия программы DEAP, разработанная Т. Коэлли в 1996 году.

Показатель эффективности рассчитывается путём аддитивно-мультипликативной свёртки выбранных критериев: взвешенная стоимость выходных компонентов (в нашем случае – агропромышленной продукции) делится на стоимостной эквивалент задействованных в процессе производства ресурсов. Далее для каждого предприятия решается задача максимизации эффективности.

Эффективность изменяется в пределах от 0 до 1, причём за 1 автоматически принимается эффективность предприятий-лидеров, которые также определяются самой программой. Можно сказать, что предприятие-лидер является ориентиром для самого себя, поскольку априори считается программой эффективным на 100 %. Что качается менее успешных в производственно-
коммерческой деятельности хозяйств, то для каждого из них DEAP определяет предприятие-ориентир, причём не обязательно одно.

Нами был проведен анализ сравнительной эффективности функционирования сельскохозяйственных организаций Республики Беларусь в 2005, 2010 и 2014 годах.

В ходе анализа мы различали производственную и коммерческую эффективность. Первая определяется с использованием объёмов выпуска в натуральном выражении, а вторая – в стоимостном. На самом деле между этими типами эффективность есть существенная содержательная разница, которая в каждом конкретном случае может быть обусловлена следующими обстоятельствами:

1) далеко не вся произведённая продукция обязательно будет реализована в рассматриваемом периоде;
2) предприятия, реализующие однородную продукцию, могут устанавливать разные отпускные цены;
3) теоретически объём реализации в натуральном выражении может превысить объём выпуска при реализации складских запасов готовой продукции.

Для расчета технической эффективности в качестве выходных факторов выступили производство зерна, молока и мяса КРС (Y3, Y4, Y5). При расчете коммерческой эффективности выходными факторами явились выручка от реализации продукции растениеводства и животноводства (Y1 и Y2).

На рисунках 1 и 2 представлены результаты распределения технической и экономической эффективности сельскохозяйственных организаций РБ. Из рисунков следует, что за последние 10 лет (2005-2014 гг.) распределение как технической, так и коммерческой эффективности функционирования сельскохозяйственных организаций системы Минсельхозпрода РБ имело положительную динамику. В 2014 году около 10 % предприятий использовали свои ресурсы оптимальным образом для производства сельскохозяйственной продукции (были технически эффективны), тогда как в 2005 году процент таких предприятий был в 2 раза меньше.

Рисунок 1 – Распределение технической эффективности сельскохозяйственных организаций системы Минсельхозпрода РБ в 2005, 2010 и 2014 годах

Доля коммерчески эффективных предприятий за анализируемый период тоже выросла, но не столь значительно. В группе эффективности от 0,8 до 1 доля технически эффективных предприятий составила в 2014 году почти 30 %, доля же коммерчески эффективных организаций в этой группе составила чуть более 10 %. То есть можно констатировать, что сельскохозяйственные организации системы Минсельхозпрода РБ демонстрируют больший рост технической эффективности, нежели коммерческой.

Библиография:
1. Charnes, A. Measuring the efficiency of decision making units with some new production functions and estimation methods/ A. Charnes, W.V. Cooper, E. Rhodes. – Center for Cybernetic Studies Research Report CCS 276, Austin, TX, University of Texas Center for Cybernetic Studies, 1977.
COMPARATIVE STUDIES OF BRAY-1 AND IRON-IMPREGNATED METHOD FOR P QUANTIFICATION ON SELECTED SOIL SAMPLES FROM DIFFERENT LAND-USE

Ogunbiyi S. O.
Department of Soil Science and Land Resources Management, Obafemi Awolowo University, Ile-Ife, Nigeria
Aremu F.J.
Department of Agricultural Economics, Obafemi Awolowo University, Ile-Ife, Nigeria
Ogunyomi O.
Department of Agricultural Sciences, Newcastle University, Australia
ogunbiyidimeji@gmail.com

Key words: bray-1, iron-impregnated, macro-nutrients.

Phosphorus, a macro-nutrient required for plant development, is majorly in the insoluble and unavailable forms. Therefore, the effectiveness of various soil tests to accurately estimate phosphorus in soils has been a major concern in recent agriculture. Thus, this study was conducted to evaluate two methods of extracting phosphorus (Bray-1 and Iron-impregnated method) in soils under different land-use.

Six contrasting soil samples were collected at depth 0-15 cm from the Teaching and Research Farm, Obafemi Awolowo University, Ile-Ife Nigeria (Rainforest which lies between longitude 4o 32´ E and 4o 40´ E, and latitude 7° 32´ N and 7o 33´ N).

Soil available phosphorus extracted using Bray-1 which employs the use of acidic extractant (0.025 N HCL + 0.03 N NH4F) and Iron-impregnated method which involves the use of mild extractant (CaCl2) and filter papers. Data collected were subjected to Analysis of Variance (ANOVA) and LSD test was used to separate the mean with the aid of SAS software.

The result showed wild variation in soil available P though not significantly different in samples from Iwo, Apomu, and Egbeda soils but higher values were obtained with Bray-1 method ranging from 22.47 – 41.96 ppm. However, Iron-impregnated method removed primarily the available P content bound to the soils.

The study showed the efficacy of the Iron-impregnated method because of the way it extracts soil available P in the same manner as plant root does.

References:
АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА СВЕТЛО-КАШТАНОВЫХ ПОЧВ ПОЛУПУСТЫНЫ
AGROECOLOGICAL ESTIMATION OF LIGHT-CHESTNUT SOILS OF THE SEMIDESERT

Лукиянов А.И., Степанова Л.П.
ФГБОУ ВО «Орловский государственный аграрный университет»
slayer-1995@mail.ru

Ключевые слова: почвы, оценка, полупустыни.

Светло-каштановые солонцеватые и солончаковые почвы распространены в условиях аридного климата северной части полупустынной зоны на суглинистых или глинистых, обычно засоленных, отложениях. Формируются они под низкорослой, изреженной полынно-дерновико-злаковой растительностью при участии ксерофитных кустарников и солеустойчивых видов.

Формирование профиля светло-каштановых почв происходит в экстремальных природных условиях, при развитии таких почвообразовательных процессов как, гумусово-аккумулятивный процесс, элювиально-иллювиальное перераспределение карбонатов, солонцеватый процесс.

Почвы характеризуются выраженной дифференциацией профиля. Под куртинами растительности возможно накопление маломощных подстилок. Гумусовый горизонт A имеет мощность 8-12 см, светло-бурый, слоеватый, бесструктурный. Ниже, до глубины 30-40 см, располагается четко выделяющийся горизонт Bsn(ca) буровато-коричневатый, плотный, призмовидный, трещиноватый, по граням структурный отдельностей часто наблюдается буровато-коричневая глянцевая корочка. Карбонатно-иллювиальный горизонт Bca белесовато-палевый, очень плотный, ореховатый, с хорошо выраженной белоглазкой, обычно отмечающейся на глубине 35-50 см, постепенно переходит в почвообразующую породу. Растворимые соли и гипс в этих почвах проявляются с 60-100 см.

Исследование микроморфологической характеристики светло-каштановой почвы показало, что A(са) материл сильно перемешан мезофауной, содержит в большом количестве копролиты, поэтому встречаются агрегаты с разным соотношением глинистой, железисто-глинистой, глинисто-карбонатной и гумусово-глинистой компонентами. От состава плазмы зависит степень выраженности подвижности плазмы, в агрегатах с повышенным содержанием глины она наиболее высокая и имеет чешуйчатую и волокнистую оптическую ориентацию. Карбонатные новообразования могут встречаться в нижней части горизонта, в силу чего повышается однородность микростроения. Bsn(ca) уплотненный пылевато-плазменный материал с углыми или округло- угловатыми агрегатами. Плазма глинистая с высокой оптической ориентацией. Характерно появление тонких глинистых кутан иллювиирования или стресс-кутан. Микрокластически встречаются агрегаты с тонкозернистым кальцитом в основном массе. Вса отличается повышенным содержанием микрокристаллического кальцита в составе глинистой плазмы, появляются...
внутрипелодные и околопоровые карбонатные стяжения, которые также содержат в основном микрит. ВСС уплотненный пылевато-глинистый карбонатные с кристаллитовой оптической ориентацией, в крупных порах характерны сростки кристаллов гипса различной размерности и формы. В порах встречаются единичные кристаллы гипса. Встречаются светлые пылеватые инфильтри. Может отмечаться литологическая неоднородность по распределению песчано-пылеватых и пылевато-глинистых зон.

Как видно из данных таблицы, содержание гумуса в гумусовом горизонте A составляет 1,3-1,4%, мощность гумусового слоя 29 см. В составе гумуса преобладают фульвокислоты отношение Сгк/Сфк составляет 0,5-0,7. Реакция среды изменяется от слабощелочной pH 7,8 в гумусовом горизонте до pH 8,5, среднешелочной реакции среды. В составе поченно-поглощающего комплекса помимо катионов кальция и магния присутствует обменный натрий в количестве 5-8% от величины емкости катионного обмена. Такое количество обменных катионов натрия обусловливает развитие солонцеватости, дисперсности и пептизуемости почвенных коллоидов и проявление в профиле почвы таких неблагоприятных свойств, как высокая плотность, твердость, склонность к набуханию и усадке, а также перемещению частиц ила из верхнего гумусового горизонта, что подтверждается характером распределения фракций механических элементов и изменение гранулометрического состава в профиле почвы.

Таким образом, аналитические данные свидетельствуют о слабой химической солонцеватости исследуемой почвы, в то время как физическая солонцеватость в профиле светло-каштановой почвы выражена более отчетливо. В солонцеватых светло-каштановых почвах установлена некоторое накопление кремнезема в гумусовом горизонте, а содержание полуторных оксидов и илстой фракции в иллювиальном солонцовом горизонте Bsn.

Особенности состава и свойств светло-каштановых солонцеватых и солончаковых почв определяют возможности их сельскохозяйственного использования. Они могут использоваться в сельском хозяйстве только при наличии пресной воды для орошения. Обрабатываемые почвы нуждаются в применении удобрений, предпочтительно физиологически кислых их форм, необходимо также проведение мероприятий по предотвращению вторичного засоления. Солонцеватые и солончаковатые светло-каштановые почвы и их комплексы с участием солонцов наиболее рентабельно использовать в пастбищном животноводстве, однако ненормированный выпас скота может спровоцировать развитие эрозии.
ФАКТОРЫ БИОЛОГИЗАЦИИ ЗЕМЛЕДЕЛИЯ И ИХ ВЛИЯНИЕ НА ГУМУСОВОЕ СОСТОЯНИЕ СЕРЫХ ЛЕСНЫХ ПОЧВ В УСЛОВИЯХ ОРЛОВСКОЙ ОБЛАСТИ

FACTORS OF A BIOLOGIZATION OF AGRICULTURE AND THEIR INFLUENCE ON A HUMIC CONDITION OF GRAY FOREST SOILS IN THE CONDITIONS OF THE OREL REGION

Золотухин А.И.
ФГБОУ ВО «Орловский государственный аграрный университет»
asolotuchin@mail.ru

Ключевые слова: земледелие, биологизация, почвы, сельское хозяйство.

Содержание и запасы органического вещества в почвах традиционно служат основными критериями оценки почвенного плодородия, и в последние годы все больше рассматриваются и с точки зрения экологической устойчивости почв как компонента биосферы.

Органическое вещество почв в большей мере определяет пищевой режим почв, оказывая на него прямое влияние, как источник элементов питания и косвенное, обусловленное действием на физико-химические и водно-физические свойства почв. На почвах, обогащенных органическим веществом значительно снижаются потери элементов минерального питания удобрений в результате миграционных процессов и загрязнение сопряженных сред.

Проведенные нами исследования показали, что содержание гумуса имело тенденцию увеличения в вариантах, где в почву вносилась сидеральная масса.

Таблица 1 - Изменение содержания гумуса под озимой пшеницей

<table>
<thead>
<tr>
<th>Варианты опыта</th>
<th>Содержание гумуса, %</th>
<th>Изменение содержания гумуса, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1998</td>
<td>2000</td>
</tr>
<tr>
<td>Однолетние травы зеленая масса</td>
<td>4,95</td>
<td>5,01</td>
</tr>
<tr>
<td>Однолетние травы: сидерат</td>
<td>5</td>
<td>5,12</td>
</tr>
<tr>
<td>Однолетние травы -зерно-сенаж</td>
<td>4,91</td>
<td>4,89</td>
</tr>
<tr>
<td>Однолетние травы зерно</td>
<td>4,86</td>
<td>4,8</td>
</tr>
<tr>
<td>НСР05</td>
<td>0,142</td>
<td>0,323</td>
</tr>
</tbody>
</table>

Внесение в почву сидеральной массы способствовало увеличению содержания гумуса на 0,12 %.

За исследуемый период заметно снижение содержания гумуса в 3 и 4 вариантах опыта - -0,02 и -0,06 % соответственно. Это связано с тем, что в почву на этих вариантах поступает незначительное количество органического вещества необходимого для пополнения запасов гумуса в виде пожнивно - корневых остатков. Применение сидеральной массы однолетних трав под озимую пшеницу способствует увеличению содержания гумуса в почве.

В темно-серых лесных почвах в пределах почвенного профиля основная часть органического вещества представлена гумусом; живая биомасса, состоящая из корней, микроорганизмов, представителей почвенной фауны, составляет около 7-10% общего содержания органического вещества. В связи с этим
представление о фракционном составе гумуса в почве является важным критерием его состояния.

Гумус темно-серых лесных почв сформировался под влиянием определенного, достаточно разнообразного растительного состава и именно этим характеризуется относительное постоянство его фракционного состава.

Темно-серые лесные почвы, входящие в состав естественных фитоценозов, имеют следующие качественные и количественные показатели состояния гумуса: содержание свободных гуминовых кислот низкое (менее 30% к общей сумме гуминовых кислот); содержание прочнокислотных гуминовых кислот высокое (30 - 60% от общей суммы гуминовых кислот), содержание нерастворимого остатка низкое (до 30% от общей суммы гуминовых кислот).

Однако при сельскохозяйственном использовании почв, когда сокращается видовое разнообразие растений, возделываемых на данных почвах, по сравнению с естественными фитоценозами, приводит к тому, что в почву поступает органика с одним и тем же качественным составом. Это может привести к некоторым изменениям фракционного состава гумусовых веществ.

В ходе проведенных исследований было выявлено, что использование факторов биологизации земледелия оказывает влияние на фракционный состав гумуса под культурами. Под влиянием внесения зеленой массы в почве происходит большее увеличение содержания фракции 2, чем в других вариантах.

Таблица 2 - Фракционный состав гумуса под озимой пшеницей, % от общего гумуса в среднем за годы исследований 1998-2000 гг.

<table>
<thead>
<tr>
<th>Варианты</th>
<th>1 срок</th>
<th>2 срок</th>
<th>3 срок</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Фр 1</td>
<td>Фр 2</td>
<td>Фр 1</td>
</tr>
<tr>
<td>Однолетние травы зеленая масса</td>
<td>11,5</td>
<td>30,3</td>
<td>9,4</td>
</tr>
<tr>
<td>Однолетние травы- сидерат</td>
<td>12,8</td>
<td>34,6</td>
<td>11,2</td>
</tr>
<tr>
<td>Однолетние травы на зерносенаж</td>
<td>10,9</td>
<td>28,6</td>
<td>11,7</td>
</tr>
<tr>
<td>Однолетние травы-зерно</td>
<td>9,3</td>
<td>23,0</td>
<td>13,0</td>
</tr>
</tbody>
</table>

Примечание: Пробы отбирались в следующие сроки:
1 Посев озимой пшеницы;
2. Цветение озимой пшеницы;
3. Уборка озимой пшеницы.

Вариант с сидеральным паром и занятым паром имеют примерно сходную динамику фракционного состава гумуса, но вариант с внесением сидерата имеет большее содержание прочнокислотной фракции, что связано с более полной гумификацией поступающей зеленой массы в почве.

Проанализировав данные таблицы можно увидеть, что в вариантах, имеющих более высокий уровень биологизации изменения во фракционном составе гумуса менее выражены и имеют положительный характер.

Библиография:
ЭКОЛОГИЧЕСКАЯ ОЦЕНКА ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ЧЕРНОЗЁМА ЮЖНОГО СОЛОЦЕВАТОГО СТЕПНОЙ ЗОНЫ

ECOLOGICAL ASSESSMENT OF PHYSICAL AND CHEMICAL PROPERTIES OF THE CHERNOZEM OF A STEPPE ZONE

Мордвинина М., Степанова Л.П.
ФГБОУ ВО «Орловский государственный аграрный университет»
ermackowa@yandex.ru

Ключевые слова: почвы, сельское хозяйство, степная зона.

Черноземы южные распространены в южной части степной зоны. В структуре почвенного покрова сельскохозяйственных угодий черноземные почвы занимают 42,9%, а в пашне доля чернозёма составляет 52,6%. Они формируются в условиях субмеридионального климата под дерновино-злаковыми средними степями. Травяной покров разреженный, отчетливо выражен летний период полупокоя для большинства доминирующих злаков. Почвообразующие породы представлены преимущественно лёссами и лёссовидными суглинками, часто содержащими легкорастворимые соли, а также элювиально-делювиальными отложениями.

Сельскохозяйственная освоенность южных черноземов высока: в европейской части России она превышает 50%, с продвижением на восток распаханность снижается и увеличивается количество пастбищ. Основные выращиваемые культуры: зерновые (пшеница, кукуруза), бобовые; значительные площади занимают технические культуры (сахарная свекла, табак), овощные и бахчевые культуры.

Основные почвообразовательные процессы: подстилкообразование слабое (из переплетённых остаток травянистых растений, гумусово-аккумулятивный процесс, биогенное и коагуляционное оструктуривание, лювиально-иллювиальное перераспределение карбонатов.

Морфологическое строение профиля: А(Н)030- АВ(Нг)3045- В(Рбк)4570-C(Пкс)70

Южные черноземы имеют укороченный гумусовый горизонт 30-65 см, мощность которого убывает с севера на юг и с запада на восток. Для этого горизонта характерно преобладание кашиканных и бурых тонов в окраске. Горизонт АВсанеоднороден по окраске, преобладают бурье тона, наблюдаются гумусовые затеки и прожилки карбонатов. Вскипание от HCl начинается в пределах гумусового горизонта, граница вскипания очень резкая и практически не подвержена сезонным колебаниям. Видимые выделения карбонатов представлены преимущественно белоглазкой. Горизонт Вс часто имеет слабые признаки солонцеватости, обуславливающие появление призмидно-ореховатой структуры. Выделение гипса и легкорастворимых солей обнаруживается на глубине 150 - 300 см.

Морфологическая характеристика:
Ас - уплотненный, агрегированный материал с преобладанием бурых гумусовых микроформ гумуса, равномерно рассеянного в плазме. Плазма изотропна, глинисто-гумусового состава. Агрегаты коагуляционного фитогенного и зоогенного происхождения 2 – 4-го порядков. Нижняя часть
профиля в значительной мере сложена слабо агрегированным материалом, в котором встречаются новообразования мелкозернистого кальцита (спарит).

АВСа - губчатый, с неравномерным распределением дисперсных микроформ. Плазма глинисто-карбонатного состава с кристаллитовой оптической ориентацией. Размер кристаллов кальцита в новообразованиях различен: в пропитке – 2-3 мкм; в белоглазке – около 1 мкм; в налетах – до 5 мкм. Характерно большое разнообразие микроформ новообразований кальцита: вокруг биогенных пор повышенные концентрации в основной массе, трубочки из микрозернистого кальцита (микрит), белоглазка из кристаллов разной размерности.

ВСа - пылевато-глинисто-карбонатный микроагрегированный материал, уплотненный, с большим количеством изолированных округлых и неправильных по форме пор. Плазма глинисто-карбонатная с кристаллитовой ориентацией. Для нижней части профиля характерно наличие макропор с экскрементами почвенной мезофауны, встречаются ооиды.

САСа - пылевато-глинисто-карбонатный материал, пропитка кальцита уменьшается, но появляются скопления кристаллов гипса в порах.

Физико-химические свойства почвы – совокупность свойств, определяющих способность почвы поддерживать физико-химическое равновесие между фазами почв, составом почвенных растворов и поглощенных оснований в почвенном поглощающем комплексе, кислотно-щелочной и окислительно-восстановительный потенциал, состав и количество доступных растению питательных веществ, буферность почв – способность противостоять изменению свойств почвы при поступлении в нее веществ из вне.

Реакция среды чернозема южного изменяется в пределах pH 7,9 до pH 8,5, что характеризует почву как слабощелочную, при этом щелочность в нижних горизонтах возрастает. В составе обменных катионов на долю обменных Ca2+ и Mg2+ приходится – 83,51 % от величины ЕКО (емкость катионного поглощение), с глубиной количество обменных катионов Ca2+ и Mg2+ снижается, а доля обменного Na возрастает более, чем в два раза с 6,49% в горизонте А1 до 16,18 % в иллювиально карбонатном горизонте. Можно сделать вывод о том, что актуальная щёлочность обусловлена наличием в почвенном растворе гидролитически щелочных солей (иона OH-), а потенциальная щелочность обусловлена содержанием обменно-поглощенного Na, который переходит в почвенный раствор и взаимодействуя с угольной кислотой, образует соду. По относительному содержанию в ППК обменного Na чернозем южный относится к группе почв слабосолонцеватых гумусовом, пахотном горизонте с увеличением степени солонцеватости в нижних горизонтах.

Солонцеватость проявляется в значительном уплотнении пахотного и особенно подпахотного слоёв на глубине 30-45 см. Поскольку солонцеватые черноземы образуют комплексы с солонцами, то требуется проведение специальных мероприятий по мелиорации и окультуриванию солонцов для выравнивания по урожайности всей площади пашни на комплексном почвенном покрове. Для осуществления химической мелиорации, необходимо рассчитать дозу внесения гипса по следующей формуле:

\[
\text{Дгипса} = 0,068(\text{Na} - 0,05. \text{Е}). h.dv, \text{где:}
\]
0,068 - милли эквивалентность гипса, г; Na – содержание обменного натрия, мг-экв/100 г; H – мощность пахотного слоя, см; dv – плотность мелиоративного слоя, г/см3; E – емкость поглощения, мг-экв/100 г; Дгипса= 0,068(2,5 - 0,05 38,5). 30. 1,58= 1,85 т/га

Содержание гумуса в профиле почвы изменяется от 4,1 % до 2,5 %, с преобладанием в составе гумусовых кислот, отношение Cг.к/ Cф.к составляет 1,8-1,4 ед повсему гумусовому профилю. Запас гумуса в слое 0-100 см составляет 430,9 т/га и оценивается как высокий запас гумуса, при этом отмечается высокая обогащённость гумуса азотом C:N - 5,8-6,2 ед. Таким образом, распаханные почвы подвержены водной и ветровой эрозии, деградации структуры, слизитизации при орошении. При сельскохозяйственном использовании большое значение имеют мероприятия по накоплению и сбережению влаги в почве и защите почв от эрозии. Эффективно совместное внесение минеральных и органических удобрений. Для успешного выращивания требовательных к влаге культур необходимо орошение.

Библиография:
АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА РАСПРЕДЕЛЕНИЯ ГУМУСА И МЕХАНИЧЕСКИХ ФРАКЦИЙ В СЕРЫХ ЛЕСНЫХ ПОЧВАХ

AGROECOLOGICAL ASSESSMENT OF DISTRIBUTION OF HUMUS AND FRACTIONS OF MECHANICAL ELEMENTS IN GREY FOREST SOILS

Конеева О.А., Степанова Л.П.
ФГБОУ ВО «Орловский государственный аграрный университет»
shelkova.anjuta@yandex.ru

Ключевые слова: почвы, сельское хозяйство, гумус.

Светло-серые почвы являются зональным типом почв и формируются преимущественно в северной части лесостепи. В Западной Сибири светло-серые лесные почвы формируются под лиственными лесами на дренированных поверхностях в зоне сопряжения тайги и лесостепи. В Орловской области на подтип светло-серых лесных почв приходится в Западной природно-экономической зоне 18,5%, в Центральной 5,6%, в Юго-Восточной 0,2%, в основном это Болховский, Мценский, Хотынецкий, Знаменский, Сосковский, Урицкий, Шаблыкинский, Дмитровский районы.

Как отмечает Ахтырцев Б.П. первые сведения о светло-серых лесных почвах (были опубликованы во второй половине XIX века Ф.И. Рупрехтом и В.В. Докучаевым, детальное описание светло-серой лесной почвы дано К.Д. Глинкой, некоторые данные имеются в работах Г.Ф. Морозова, Г.И. Танфильева, Н.И. Прохорова, П.В. Отоцкого. Непосредственным исследованием генезиса серых лесных почв занимались такие ученые как В.В. Докучаев, С.И. Коржинский, И.В. Тюрин, В.Р. Вильямс, В.И. Талиев и другие ученые.

Формирование почвенного профиля происходит под воздействием различного рода процессов, которые разнообразны по своей сложности и направленности – биологических, химических, биохимических, физических, физико-химических. Сочетание факторов почвообразования в лесостепной зоне определяет степень выраженности и направленность протекания почвенных процессов в разных экологических условиях и формирования подтипов серых лесных почв.

1. Подстилкообразование — формирование на поверхности почвы органического (в нижней части органоминерального) слоя лесной подстилки или степного войлока, находящегося по вертикальным слоям и во времени (по сезонам года) на различных стадиях разложения растительных остатков.

Эти почвы формируются в условиях периодически промывного водного режима, при преобладании лет со сплошным их промачиванием. На фоне преобладающего дернового процесса имею место проявление оподзоливания. Этот тип характеризуется выносом веществ из верхнего горизонта и накоплением их в иллювиальной (средней) части профиля. Он характерен для тех же элементарных процессов и условий антропогенного почвообразования, что и для элювиального типа.

2. Дерновый (гумусово-аккумулятивный) процесс развивается под воздействием многолетней травянистой растительности в условиях умеренно влажного климата и особенно энергично при непромывном типе водного режима на рыхлых карбонатных породах (лессах) в степной зоне. Короткий цикл
развития трав (1-3 года), травянистая растительность, богатая азотом и зольными элементами при значительной доле корней (от 20-25 до 85-97% от всей фитомассы), обусловливают протекание процессов гумификации непосредственно в почве. Взаимодействие гумусовых веществ с обменными катионами Ca и Mg обеспечивает формирование в почве агрономически ценной водопрочной структуры.

3. Подзолистый процесс. Интенсивность подзолистого процесса зависит от сочетания факторов почвообразования. Одно из условий его проявления - нисходящий ток воды: чем меньше промачивается почва, тем слабее протекает этот процесс. Временное избыточное увлажнение почвы под лесом усиливает подзолистый процесс. Кроме того, возникает большое количество низкомолекулярных кислот и фульвокислот. В гумусовом слое имеют остаточные признаки воздействия подзолистого процесса в виде белесой присыпки - главного отличительного морфологического признака этого подтипа.

4. Лессиваж (или лессивирование) – процесс выноса иллистой фракции из верхней части профиля без ее химического изменения. Считается, что лессиваж предшествует оподзоливанию, а при определенных условиях эти процессы могут идти одновременно. Морфологически процессы проявляются одинаково. Обычно под термином «оподзоливание» понимают сумму этих двух процессов (лессиважа и собственно оподзоливания).

Светло-серые почвы чаще всего имеют элювиально-иллювиальное распределение иллистой фракции. Элювиальные горизонты по сравнению с нижележащими характеризуются повышенным содержанием иллита и каолинита, вниз по профилю возрастает количество смектитовых минералов. Препараты светло-серых лесных почв отмечаются закономерностью распространения иллитов и кремнезема и полуторных окислов железа и алюминия. В верхней части профиля почвы наблюдается вынос частиц ила на глубине 3-43 см, где содержание иллистой фракции составило 10,3-12,7%. При переходе в иллювиальный горизонт происходит накопление частиц ила до 30,6% на глубине 43-70 см и закономерное утяжеление гранулометрического состава от легкосуглинистого с преобладанием частиц ила и крупной пыли в иллювиальном горизонте. Крупная пыль не пластична, слабо набухает, обладает невысокой влагоёмкостью, не участвует в структурообразовании. После выпадения осадков и последующего высыхания, а также механического воздействия обрабатывающих орудий светло-серые лесные почвы заполняются с образованием плотной поверхностной корки, затрудняющий водо и воздух обмен. Иллювиальный горизонт обладает водоупорными свойствами, из этого следует переувлажнения выше, находящихся слоёв почвы, особенно в период снеготаяния, что может обусловить опасность.

Развитие процессов оподзоливания в светло-серой почве подтверждается данными валового анализа почвы. Представленные данные показывают накопление SiO₂ в слое почвы 3-43 см до 85,68% и 86,22 и резкое его уменьшение в иллювиальной части профиля почвы до 78,7-80,01% при одновременном перераспределении полуторных окислов железа и алюминия, если в элювиальной части профиля почвы наблюдается вынос R₂O₃, содержание которых составило 9,83-10,22%, то в иллювиальном горизонте количество полуторных окислов железа и алюминия возрастает до 16,87%, то есть почти в 1,7 раза. При этом установлена наибольшая миграционная способность для соединений железа.
Распространение полуторных окислов отражают существенные различие в оподзоленности данных почв. Элювиальный горизонт светло-серой лесной почвы сильно обеднён \(\text{Al}_2\text{O}_3 \) и \(\text{Fe}_2\text{O}_3 \).

Запас гумуса в 100 см слое почвы составляет 113.1 т/га это говорит о низком запасе гумуса. Светло-серая лесная почва относится к среднегумусной. В составе гумуса преобладают фульвокислоты, следовательно почва характеризуется, как почва с низким запасом гумуса, повышенной кислотностью, низкой величиной ЕКО, низкой обогащенностью азотом, слабой оструктуренностью, повышенной плотностью, низкой биологической активностью, неблагоприятным питательным режимом.

Молекулярно-массовое распределение системы гуминовых кислот светло-серых лесных почв отражает более высокую степень трансформации органических остатков в ходе гумификации по сравнению с лесными почвами таёжной зоны. На фоне снижения содержания протогуминовых веществ и лигниноподобных соединений начинают доминировать « зрелые» гуминовые кислоты. Молекулы гуминовых кислот характеризуются высоким содержание углерода (до 55%) и значительной долей ароматических фрагментов в составе молекул. В составе молекул практически отсутствуют алифатические фрагменты полисахаридов и белков, источником которых являются органические кислоты.

Особый интерес представляют данные, характеризующие, обогащенность гумуса азотом. Данные таблицы подтверждают низкий уровень обогащенности гумуса азотом. В гумусово-элювиальном горизонте она составляет 12,9-18,2 ед. Что требует внесения азотных удобрений или решения проблемы биологического накопления азота в почве возделыванием бобовых культур и активизации процесса азотфиксации.

Особенности состава и свойств светло-серых лесных почв определяют возможности их сельскохозяйственного использования. Они широко используются в земледелии. На них выращивают зерновые культуры, кукурузу, свёклу, картофель и др.

Библиография:
ОСОБЕННОСТИ В РАЗВИТИИ АНАТОМИЧЕСКИХ СТРУКТУР ГОРОХА В ГОРОХО-ОВСЯНОЙ СМЕСИ ПРИ РАЗЛИЧНЫХ СПОСОБАХ ОБРАБОТКИ ПОЧВЫ
FEATURES IN DEVELOPMENT OF ANATOMICAL STRUCTURES OF PEAS IN PEA-OAT SOWINGS AT VARIOUS WAYS OF PROCESSING OF THE SOIL

Голышкин Л.В.
ФГБНУ ВНИИСПК
Наполова Г.В.
ФГБОУ ВО «Приокский государственный университет»
Наполов В.В.
ФГБОУ ВО «Орловский государственный аграрный университет»
napolov@mail.ru

Ключевые слова: горох, смешанные посевы, плодородие, обработка почвы.

Одним из диагностических признаков реакции на воздействие каких-либо факторов на растительный организм может выступать структурный анализ. Наиболее показательны в этом плане площадь и толщина листовой пластинки, а также некоторые показатели параметров мезофилла, например площадь устьиц. Интерес представляют также площадь центральной жилки, максимальная площадь ксилемных клеток и другие [1, 2, 3, 4, 5].

Опыт проводился на опытном поле факультета агробизнеса и экологии Орловского ГАУ. Изучались пять вариантов обработки почвы: нулевая, плоскорезная, комплексная, отвальная плугом ПЛН-3-35 и отвальная оборотным плугом LEMKEN. Посев производили сеялкой СЗ-5,4 и посевным комплексом John Deere 730. Изучался сорт пелюшки Алла, посеянной в смеси с овсом сорта Привет. Предшественником был ячмень.

Согласно схеме взаимосвязи параметров листа разработанной Голышкиным Л.В. при благоприятных условиях у растений площадь листовой пластинки увеличивается, толщина листа уменьшается, площадь ксилемной клетки уменьшается, площадь центральной жилки уменьшается, площадь устьиц уменьшается. Исходя из данной теории можно сделать выводы. Площадь листа была наибольшей по плоскорезной обработке, далее идет обработка обычным плугом и оборотным. Найхудшие результаты были отмечены на вариантах с нулевой и комплексной обработками. По видам посева лучшие результаты отмечены при использовании посевного комплекса John Deere 730.

По толщине листа лучшие результаты согласно рассматриваемой теории получены на вариантах с обработкой плугом ПЛН-3-35, КОС и LEMKEN. Хуже результаты на вариантах с нулевой обработкой и плоскорезной. Наилучшие результаты по способу посева показала сеялка СЗ-5,4.

Лучшие результаты по максимальной площади ксилемных элементов были получены на вариантах с обработкой почвы плугом LEMKEN, далее варианты располагались в следующей последовательности: обработка КОС, ПЛН-3-35, нулевая обработка и плоскорезная. По способу посева лучшие показатели получены при посеве СЗ-5,4.

По площади центральной жилки показатели располагались в следующей последовательности: нулевая обработка, комплексная, вспашка плугом ПЛН-3-35, плоскорезная обработка, вспашка оборотным плугом LEMKEN. По способу посева лучшие результаты также отмечены при посеве сеялкой СЗ-5,4.
Таблица 1 - Результаты морфометрии некоторых параметров мезофилла листа гороха пелюшки сорта Алла в зависимости от варианта обработки почвы

<table>
<thead>
<tr>
<th>п/п</th>
<th>Сеялка</th>
<th>Площадь листа, см²</th>
<th>Толщина листа, мкм</th>
<th>Площадь макс ксилемной клетки, мкм²</th>
<th>Площадь центральной жилки, мкм²</th>
<th>Площадь устьиц нижнего эпидермиса, мкм²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плуг оборотный LEMKEN</td>
<td>C3-5,4</td>
<td>0,67</td>
<td>231,63±3,47</td>
<td>22720,68</td>
<td>258,9</td>
<td>416,06±17,12</td>
</tr>
<tr>
<td>John Deere 730</td>
<td>2,85</td>
<td>190,76±11,53</td>
<td>20267,22</td>
<td>355,5</td>
<td>242,75±17,45</td>
<td></td>
</tr>
<tr>
<td>ПЛН-3-35</td>
<td>C3-5,4</td>
<td>3,16</td>
<td>201,20±2,45</td>
<td>20119,75</td>
<td>74,41</td>
<td>191,78±19,96</td>
</tr>
<tr>
<td>John Deere 730</td>
<td>1,79</td>
<td>183,41±3,53</td>
<td>47117,23</td>
<td>219,31</td>
<td>317,86±15,31</td>
<td></td>
</tr>
<tr>
<td>КОС</td>
<td>C3-5,4</td>
<td>0,84</td>
<td>211,13±5,24</td>
<td>20355,97</td>
<td>175,36</td>
<td>208,34±10,08</td>
</tr>
<tr>
<td>John Deere 730</td>
<td>2,47</td>
<td>185,99±3,34</td>
<td>24550,69</td>
<td>81,72</td>
<td>260,38±29,41</td>
<td></td>
</tr>
<tr>
<td>Плоскорез</td>
<td>C3-5,4</td>
<td>3,13</td>
<td>181,35±3,00</td>
<td>16873,76</td>
<td>124,96</td>
<td>270,57±9,90</td>
</tr>
<tr>
<td>John Deere 730</td>
<td>1,9</td>
<td>441,45±21,16</td>
<td>65343,78</td>
<td>355,5</td>
<td>227,16±3,94</td>
<td></td>
</tr>
<tr>
<td>Без обработки</td>
<td>C3-5,4</td>
<td>2,06</td>
<td>220,89±2,87</td>
<td>34033,4</td>
<td>157,44</td>
<td>383,61±14,78</td>
</tr>
<tr>
<td>John Deere 730</td>
<td>1,25</td>
<td>229,57±4,63</td>
<td>35229,07</td>
<td>96,74</td>
<td>253,14±16,97</td>
<td></td>
</tr>
</tbody>
</table>

Наименьшая площадь устьиц отмечена на варианте с комплексной обработкой почвы. Далее идут плоскорезная обработка, вспашка плугом ПЛН-3-35, нулевая обработка и вспашка оборотным плугом LEMKEN. По способу посева лучше показатели у посевного комплекса John Deere 730.

В связи с вышеизложенным можно сделать вывод, что рассматриваемая проблема очень многогранна и в настоящее время не достаточно изучена, требует продолжения исследований и для диагностики может использоваться только комплекс рассматриваемых показателей. Делать же выводы по какому-то одному показателю нельзя. В целом же это очень интересная и перспективная методика позволяющая делать предварительные выводы на ранних этапах развития растений до получения урожая.

Библиография:
2. Ленькова Г.В., Гольшкин Л.В. Функциональные особенности ассимиляционного аппарата видов и сортов гречихи. В сб. Тезисы докладов 4-го съезда общества физиологов растений России. Москва, 1999. – с. 405.
5. Наполов В.В., Наполова Г.В. Физиологические особенности развития растений ячменя при различных способах заделки побочной продукции бобовых и злаковых культур. В сб. Актуальные проблемы развития современного сельскохозяйственного производства. Орел: Изд. Орел ГАУ, 2006. - с. 72-79.
АКТУАЛЬНЫЕ ВОПРОСЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ПОБОЧНОЙ ПРОДУКЦИИ НА УДОБРЕНИЕ

TOPICAL ISSUES OF INCREASE OF EFFECTIVENESS OF USE OF SECONDARIES PRODUCTION AS FERTILIZER

Наполов В.В.
ФГБОУ ВО «Орловский государственный аграрный университет»

Наполова Г.В.
ФГБОУ ВО «Приокский государственный университет»
napolov@mail.ru

Ключевые слова: удобрение, побочная продукция, плодородие, почва.

Устойчивое производство сельскохозяйственной продукции возможно только при сохранении плодородия почвы. Основным направлением в решении этого вопроса является систематическое внесение органических удобрений. Хорошие результаты дает применение соломы. Создание повышенного органического фона будет способствовать активизации биологических процессов в почве, что положительно скажется на обеспеченности растений питательными веществами и биологически активными соединениями, на лучшем фитосанитарном состоянии почв. В свою очередь, повышение этих показателей явится основой для экономии энергетических ресурсов. Способ внесения соломы важный фактор, влияющий на изменение почвенного плодородия, а также на рост и развитие произрастающих на этой почве растений.

При создании условий для поступления в почву и трансформации фитомассы следует принимать во внимание, что уровень эффективного плодородия почвы определяется не только количеством имеющихся в почвенной среде элементов минерального питания и влаги, но и наличием условий для их использования культурными растениями [1, 2, 3, 4, 5]. Практическая реализация этого вопроса связана с недостаточной проработанностью теоретических основ.

С этой целью нами был заложен вегетационный опыт по изучению влияния различных видов соломы и способов их заделки на развитие растений ячменя и свойства почвы.

В вегетационном опыте изучалось влияние различных видов соломы и способов их заделки на развитие растений ячменя и свойства почвы. Опыт проводился по тринадцати вариантам: почва (контроль), смесь почвы с соломой гороха, семена над экраном из соломы гороха, семена в соломе гороха, смесь с соломой ячменя, солома ячменя над семенами, семена над соломой ячменя, семена в соломе ячменя, семена в смеси с соломой ячменя над почвой, семена в почве над смесью с соломой ячменя, семена в почве над прослойкой из смеси с соломой ячменя, семена под смесью с соломой ячменя в почве и семена в прослойке смеси под почвой.

На большинстве вариантов опыта всходы появились на шестой день после посева. На шестой день отмечается лучшее развитие растений по соломе ячменя по вариантам, где семена размещаются над растительными остатками. То же происходит и на вариантах с соломой гороха. Худшее развитие растений на соломе гороха можно объяснить тем, что в ней более узкое соотношение С:N,
следовательно она быстрее разлагается и повышает токсичность почвы на большую величину, нежели растительные остатки ячменя. На десятый-тринадцатый день после посева высота растений ячменя на вариантах с соломой гороха обгоняют по высоте аналогичные варианты с растительными остатками ячменя. Но в это время и вплоть до семнадцатого дня растения лучше развиваются на контроле, что объясняется отсутствием там продуктов разложения растений. На двадцать восьмой день после посева вариант с размещением семян в гомогенной смеси почвы с соломой гороха обгоняет контрольный. Следовательно здесь исчезли вредные ингибитирующие рост растений эффекты возникшие в процессе разложения фитомассы гороха.

В конце вегетации лучше всего ячмень развивался на вариантах с соломой гороха, при этом лучше были развиты растения, где семена находились над соломой гороха, средняя высота растений здесь в конце вегетации была равна 69,4 см, тогда как на контроле-35,8 см. Варианты с семенами в смеси с соломой и в соломе различались незначительно и составили соответственно 55,5 и 51,3 см. В вариантах с соломой ячменя лучшие результаты получены при размещении семян над смесью смеси с почвой и над прослойкой из смеси- 36,5 и 27,6 см соответственно. Хуже всего растения развивались на смеси с соломой ячменя-12,8 см.

На вариантах где посевной слой формировался без растительных остатков получены лучшие результаты и по другим показателям развития растений, о чем наглядно свидетельствуют данные таблицы. В ней также представлены данные по содержанию в почве после уборки растений основных элементов питания и рН солевой вытяжки.

Таблица 1 - Эффективность различных способов создания посевного слоя

<table>
<thead>
<tr>
<th>Варианты</th>
<th>Всх-ты, %</th>
<th>Урожай зерна, г/сосуд</th>
<th>Хлорофилл А+ В, мг/г сырого вещества</th>
<th>Каталаза, отн.ед/г сырой массы</th>
<th>Почва</th>
<th>Na/г</th>
<th>P205</th>
<th>K20</th>
<th>рН</th>
<th>mg/100г почвы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Почва (контроль)</td>
<td>91,7</td>
<td>3,35</td>
<td>2,496</td>
<td>3,55</td>
<td>15,26</td>
<td>28,53</td>
<td>17,28</td>
<td>5,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Гомогенная смесь почвы с соломой гороха</td>
<td>75,0</td>
<td>22,69</td>
<td>3,345</td>
<td>2,81</td>
<td>18,90</td>
<td>30,90</td>
<td>67,22</td>
<td>6,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Семена над экраном смеси соломы гороха</td>
<td>63,4</td>
<td>26,93</td>
<td>3,475</td>
<td>2,53</td>
<td>35,42</td>
<td>40,88</td>
<td>63,06</td>
<td>6,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Семена в соломе гороха</td>
<td>66,7</td>
<td>20,87</td>
<td>3,180</td>
<td>3,09</td>
<td>17,92</td>
<td>32,50</td>
<td>74,40</td>
<td>6,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Гомогенная смесь почвы с соломой ячменя</td>
<td>78,4</td>
<td>0,04</td>
<td>1,023</td>
<td>3,81</td>
<td>17,64</td>
<td>30,20</td>
<td>63,52</td>
<td>6,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Солома ячменя над семенами</td>
<td>88,4</td>
<td>0,76</td>
<td>2,005</td>
<td>3,67</td>
<td>17,92</td>
<td>35,68</td>
<td>72,00</td>
<td>5,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Семена над соломой ячменя</td>
<td>58,4</td>
<td>1,16</td>
<td>2,096</td>
<td>3,64</td>
<td>18,20</td>
<td>33,76</td>
<td>57,60</td>
<td>5,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Семена в соломе ячменя</td>
<td>68,4</td>
<td>1,15</td>
<td>1,675</td>
<td>3,69</td>
<td>18,34</td>
<td>33,13</td>
<td>57,60</td>
<td>5,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Семена в смеси с соломой ячменя над почвой</td>
<td>76,7</td>
<td>0,37</td>
<td>1,493</td>
<td>3,74</td>
<td>19,88</td>
<td>37,66</td>
<td>82,28</td>
<td>5,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Семена в почве над смесью с соломой ячменя</td>
<td>88,4</td>
<td>3,38</td>
<td>2,908</td>
<td>3,52</td>
<td>18,34</td>
<td>38,29</td>
<td>54,60</td>
<td>5,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Семена в почве над прослойкой из смеси с соломой ячменя</td>
<td>88,4</td>
<td>2,53</td>
<td>2,358</td>
<td>3,64</td>
<td>16,52</td>
<td>33,13</td>
<td>59,60</td>
<td>5,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Семена под смесью с соломой ячменя в почве</td>
<td>60,0</td>
<td>0,62</td>
<td>1,715</td>
<td>3,67</td>
<td>19,18</td>
<td>35,68</td>
<td>84,04</td>
<td>5,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Семена в прослойке смеси под почвой</td>
<td>50,0</td>
<td>0,64</td>
<td>1,563</td>
<td>3,71</td>
<td>18,48</td>
<td>36,66</td>
<td>80,48</td>
<td>5,95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
На основании этих данных можно сказать, что на свойства почвы и развитие растений большое влияние оказывает не только вид вносимой соломы, но и способ ее заделки. А в связи с этим, формирование посевного слоя в земледелии должно осуществляться на основе ограничения контакта семян с растительными остатками на начальных этапах онтогенеза.

Библиография:
1. Истратова И.В., Наполов В.В., Наполова Г.В., Щукин А.Ю. Формирование плодородия почвы и продуктивность растений ячменя при использовании в качестве удобрения побочной продукции./В сб. Пути повышения устойчивости растениеводства к негативным природным и техногенным воздействиям. Орел: Издательство Орел ГАУ, 2011. С. 142-145.
2. Лобков В.Т., Наполов В.В. Процесс растений ячменя в зависимости от использования соломы бобовых и злаковых культур на удобрение и способов ее заделки./В сб. Естественнонаучные и технологические аспекты развития АПК: опыт и проблемы, 1998.-с. 91-92.
3. Лобков В.Т., Наполов В.В. Способ посева семян зерновых культур./Патент на изобретение RUS 2182414 22.03.1999.
4. Наполов В.В. Биологические аспекты формирования плодородия почвы в севооборотах с использованием побочной продукции сельскохозяйственных культур на удобрение. Автореф. дисс. ... канд. с.-х. наук. Орел, 1999. - 18с.
5. Наполов В.В., Наполова Г.В. Физиологические особенности развития растений ячменя при различных способах заделки побочной продукции бобовых и злаковых культур./В сб. Актуальные проблемы развития современного сельскохозяйственного производства. Орел: Изд. Орел ГАУ, 2006. - с. 72-79.
ЭФФЕКТИВНОСТЬ ПОБОЧНОЙ ПРОДУКЦИИ РАЗЛИЧНЫХ КУЛЬТУР В КАЧЕСТВЕ УДОБРЕНИЙ
EFFECTIVENESS OF SECONDARIEST PRODUCTION OF VARIOUS CROPS AS FERTILIZERS

Наполова Г.В.
ФГБОУ ВО «Приокский государственный университет»
Наполов В.В.
ФГБОУ ВО «Орловский государственный аграрный университет»
napolov@mail.ru

Ключевые слова: удобрение, побочная продукция, культуры, почва.

Создание условий для устойчивого функционирования агроэкосистем – одна из важнейших задач земледелия. Она предусматривает сохранение почвенного покрова, плодородия почвы и обусловливает необходимость наиболее рационального использования агроэкологических ресурсов продуктивности сельскохозяйственных культур.

Концепция решения этой проблемы предполагает уменьшение величины разомкнутости круговорота веществ и энергии в агроценозах путем вовлечения в этот круговорот максимально возможного количества образовавшейся фитомассы. Ее практическое осуществление связано с решением многих вопросов, касающихся изменения свойств почвенной среды при внесении в нее остатков растений различных видов [1, 2, 3, 4, 5].

Надежным резервом увеличения количества органических удобрений является солома сельскохозяйственных культур.

Солома, внесенная в почву с целью частичной компенсации минерализуемого органического вещества, оказывает существенное влияние на свойства почвы и урожай последующей культуры. Влияние это не однозначно и связано с особенностями конкретной почвы, агротехники, погодных условий, количества и периодичности внесения соломы.

Хотя в настоящее время имеется много литературных данных по характеру воздействия соломы на почву и урожай сельскохозяйственных культур, вопрос о ее практическом использовании еще далек от окончательного решения.

При этом мало исследованными являются вопросы удобрительной ценности побочной продукции различных культур, способов заделки фитомассы в почву и другое. В связи с этим для изучения этих и ряда других вопросов кафедрой земледелия на опытном поле в с.Лаврово, Орловского района, Орловской области были проведены исследования.

Полевые опыты были заложены на тёмно-серой лесной среднесуглинистой почве с содержанием гумуса 4,48%, подвижного фосфора 14,6 мг/100 г почвы, обменного калия 14,8 мг/100 г почвы, pH почвенного раствора 5,8, суммой поглощенных оснований 31,1 мг экв. на 100 г почвы. Почвообразующие и подстилающие породы — покровные суглинки. На склоне северо-западной экспозиции крутизной 0-3°.

В опыте изучалось действие различных видов соломы на основные сельскохозяйственные культуры. Вносились следующие виды соломы: вико-овсяная, ячменная, гречишная и озимой пшеницы. В качестве контрола
использовался пар. Были посевы следующие сельскохозяйственные культуры: горох, яровая пшеница, ячмень, гречиха, вико-овсяная смесь и сахарная свекла. Определялся комплекс показателей.

Полученные результаты свидетельствуют, что, как правило, лучше всего растения растут и развиваются на вико-овсяной и гречишной соломе, хуже -на вариантах без внесения соломы и чаще всего при удобрении соломой того же вида. По высоте растений в фазу цветения эта закономерность проявилась на посевах яровой пшеницы, ячменя и гречихи. Особенно отчетливо эти различия проявились на яровой пшенице, где самые высокие растения при внесении вико-овсяной и гречишной соломы -74,3 и 62,1 см, средние на контроле -58,5, а самые низкие по ячменной и пшенничной соломе -54,9 и 49,4 см. У ячменя та же тенденция, но здесь меньшая высота растений при использовании его соломы. Гречиха также плохо росла на своей соломе. Горох лучше нарастал по всем видам соломы, а на варианте без внесения фитомассы его посевы были самые низкие (55,4 см). По вариантам с внесением соломы растения располагались в следующей последовательности (в порядке убывания)-солома вико-овсяной смеси-66,5, солома гречихи-64,4, ячменя-63,5 и озимой пшеницы-56,2 см. В то же время вико-овес по своей соломе нарастал лучше всего, что, по-видимому, связано с тем, что в совместных посевах разных культур лучше подавляются негативные эффекты, возникающие при посеве культуры по своей соломе.

Внесение соломы влияет не только на рост, но и качественно изменяет весь фотосинтетический аппарат растений. Наибольшая площадь листьев у всех культур отмечается при использовании соломы вико-овса, далее идут гречишная, ячменная и пшенничная солома. При посеве культуры по своей соломе или соломе культуры одного семейства растения развиваются хуже контрольного варианта (без использования соломы). Исключение составляет вико-овсяная смесь, где растения овса и вики лучше развиваются по соломе вико-овса, что видимо связано с подавлением негативных эффектов в совместных посевах. Большее количество устьиц на единицу площади формируется на больших по площади листьях у всех культур, но размер устьиц при этом уменьшается.

Урожайность культур находится в прямой зависимости от развития листового аппарата.

Таблица 1 - Урожайность культур по вариантам опыта (у вико-овсяной смеси урожайность сена), т/га

<table>
<thead>
<tr>
<th>Культуры</th>
<th>Без соломы</th>
<th>Вико-овсяная</th>
<th>Ячменная</th>
<th>Гречишная</th>
<th>Озимой пшеницы</th>
<th>ПСР05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Яровая пшеница</td>
<td>3,01</td>
<td>3,41</td>
<td>2,86</td>
<td>3,13</td>
<td>2,60</td>
<td>0,024</td>
</tr>
<tr>
<td>Горох</td>
<td>1,61</td>
<td>2,48</td>
<td>1,93</td>
<td>2,25</td>
<td>1,83</td>
<td>0,16</td>
</tr>
<tr>
<td>Ячмень</td>
<td>2,38</td>
<td>2,60</td>
<td>2,19</td>
<td>2,50</td>
<td>2,26</td>
<td>0,12</td>
</tr>
<tr>
<td>Гречиха</td>
<td>1,26</td>
<td>1,52</td>
<td>1,18</td>
<td>0,93</td>
<td>1,05</td>
<td>0,09</td>
</tr>
<tr>
<td>Вико-овес</td>
<td>4,51</td>
<td>6,73</td>
<td>5,55</td>
<td>5,71</td>
<td>4,99</td>
<td>0,20</td>
</tr>
<tr>
<td>Сахарная свекла</td>
<td>29,9</td>
<td>33,7</td>
<td>30,9</td>
<td>32,5</td>
<td>30,1</td>
<td>1,80</td>
</tr>
</tbody>
</table>

Наиболее высокий урожай яровой пшеницы, ячменя и сахарной свеклы получен на вариантах с внесением вико-овсяной соломы, затем идут варианты с гречишной соломой. У гороха лучшие результаты по вико-овсяной и гречишной соломе. Лучший урожай гречихи получен на варианте с внесением вико-овсяной
соломы. Худшие результаты отмечены при выращивании культур по своей соломе - за исключением вико-овса.

При внесении соломы различных культур изменяются свойства почвы. В частности при внесении соломы рН солевой вытяжки, как правило, изменяется в сторону уменьшения кислотности почвы.

Солома оказывает значительное влияние на питательный режим почвы. В наших исследованиях снижение содержания легкогидролизуемого азота наблюдалось лишь на начальных этапах развития растений, а в дальнейшем его содержание выравнивалось и даже увеличивалось. Выделяющиеся в процессе разложения соломы органические кислоты по всем вариантам сразу же повышали подвижность фосфора. Подвижного калия в начальные фазы вегетации на вариантах с соломой было значительно больше, но в дальнейшем его содержание уменьшалось.

Библиография:
1. Бородин Е.С., Наполов В.В., Наполова Г.В., Гребенников В.А. Влияние внесения соломы на режим легкогидролизуемого азота в почве./В сб. Актуальные направления развития сельскохозяйственной науки. Орел: Издательство Орел ГАУ, 2008. – с. 8-10.
2. Лобков В.Т., Наполов В.В. Об эффективности использования соломы различных культур в качестве удобрений./В сб. Естественнонаучные и технологические аспекты развития АПК: опыт и проблемы. -Орел, 1998.-с.92-93.
4. Наполов В.В. Биологические аспекты формирования плодородия почвы в севооборотах с использованием побочной продукции сельскохозяйственных культур на удобрение. Диссертация ... канд. с.-х. наук. Орел, 1999. – 138с.
ЭФФЕКТИВНОСТЬ РАЗЛИЧНЫХ СПОСОБОВ ОБРАБОТКИ ПОЧВЫ
EFFECTIVENESS OF VARIOUS WAYS OF PROCESSING OF THE SOIL

Лобков В.Т., Наполов В.В.
ФГБОУ ВО «Орловский государственный аграрный университет»
Наполова Г.В.
ФГБОУ ВО «Приокский государственный университет»
napolov@mail.ru

Ключевые слова: обработка почвы, плодородие, солома, урожай.

Одним из основных элементов систем земледелия, позволяющим повысить плодородие почв, урожайность сельскохозяйственных культур и качество получаемой продукции, является рациональная обработка почвы [1, 3]. Мы в своих исследованиях провели сравнительную оценку способов обработки почвы с использованием различных почвообрабатывающих орудий.

Целью исследовательской работы было установление показателей плодородия почв и развития растений при различных видах основной обработки почвы.

Местом проведения наших исследований было опытное поле кафедры земледелия в с. Лаврово, Орловского района, Орловской области. Преобладающий тип почв опытного участка является характерным для Нечернозёмной зоны – серые лесные, среднесуглинистые.

Схема опыта была такой: основная обработка почвы осуществлялась плугом LEMKEN, ПЛН-3-35, KOS, плоскорезом и вариант без обработки, каждый из этих вариантов делили на две части одну из которых обрабатывали гербицидом Тризлак. Посев осуществлялся двумя сеялками СЗ-5,4 и John Deere 730.

Сорные растения являются постоянным компонентом агроэкосистем. При высокой численности они снижают урожай и его качество. Уровень засоренности определялся в условиях каждого вегетационного периода. Динамика в численности сегетальной флоры зависела от количества осадков и вида основной обработки почвы, достоверной зависимости между этими показателями и среднемесячной температурой не выявлено не было.

В посевах озимой пшеницы имели распространение сорные растения различных биогрупп. Но основное количество представители многолетние биогруппы. В посевах наименьшее распространение имел одуванчик лекарственный относящийся к стержнекорневой биогруппе и вьюнок полевой (к группе корнеотпрысковых), полынь обыкновенная представитель этой же биогруппы наблюдалась лишь на варианте без обработки, хотя на этом варианте опыта была весьма многочисленна 5 шт/м².

Более значимым критерием, чем флористический состав сорняков, является показатель количества сорной растиельности на м² посева. Потому как сорные растения не только иссушают почву, исчерпывают запас питательных веществ, но и затеняют культурные посевы, нарушая процессы фотоассимиляции. При изучении количественного показателя была выявлена закономерность — чем шире видовое разнообразие, тем количество экземпляров каждого вида ниже на 1 м². Следовательно, на варианте опыт без обработки конкуренция за факторы жизни у сорняков наблюдается не только с культурными растениями но между их видами. Сложившиеся отношения в агроценозах оказали влияние на урожайность культуры.
При возделывании зерновых культур обработка почвы является важнейшим агroteхническим приемом, который способствует увеличению запасов влаги в глубоких слоях почвы, более мощному развитию корневой системы культурных растений, уничтожению сорняков, вредителей и болезней, а также повышению урожайности [2, 4].

Установлено, что в результате нулевой обработки почвы урожайность озимой пшеницы колеблется в пределах от 32 до 47 ц/га, причем применение гербицидов сказывается на урожайности довольно негативно. Как видно из опыта, при нулевой обработке почвы целесообразнее использовать сеялку СЗ-5,4, поскольку ее использование в данной ситуации увеличивает урожайность озимой пшеницы на 10-16 ц/га по сравнению с сеялкой «John Deere 730». В варианте с плоскорезной обработкой почвы урожайность остается примерно на том же уровне, что и в предыдущем. Однако следует отметить тот факт, что применение гербицидов при использовании сеялки «John Deere 730» резко повышает урожайность озимой пшеницы. Отказ от которых снижал урожайность до 32,5 ц/га. Комплексная обработка почвы, рассмотренная нами в варианте с обработкой почвы комплексным почвообрабатывающим агрегатом КОС, способствует получению сравнительно высоких урожаев озимой пшеницы на уровне 45-48 ц/га. Применение гербицидов незначительно повышало урожайность в этом случае, причем повышение урожайности более выражено при использовании сеялки «John Deere 730», нежели при использовании сеялки СЗ-5,4.

Применение пестицидов привело к получению урожайности на уровне 51,08 ц/га, тогда как при эксплуатации посевного комплекса «John Deere 730» получена урожайность 43,33 ц/га без применения гербицидов и 45,42 ц/га с их применением. Во всяком случае, в этом варианте, как и в предыдущем, целесообразнее применять пестициды.

В заключительном варианте было изучено влияние обработки почвы оборотным плугом LEMKEN на урожай озимой пшеницы. В этом случае добриться высокой продуктивности (свыше 50 ц/га) можно лишь при применении пестицидов. Если же не использовать пестициды, то урожайность остается на более низком уровне.

Содержание клейковины в зерне пшеницы и ее качество - важные показатели, характеризующие качество зерна [5]. В наших исследованиях использовали сорт озимой пшеницы Московская 39. Были получены следующие результаты.

На варианте без обработки с использованием сеялки С3-5,4 и гербицидов показатели содержания клейковины в зерне озимой пшеницы, она составили 16,60% это наименьший результат, без использования гербицидов то процент содержания клейковины возрастал и составил 31, 57. При норме клейковины не менее 28%. При использовании этой сеялки без применения гербицидов результат был наилучшим. Так же при этом способе обработки почвы использовали еще один тип сеялки - посевной комплекс John Deere 730. При использовании гербицидов содержание клейковины в зерне составляет 23,67%, без использования содержание клейковины возрастило и в условиях нашего опыта составило 27,90%, что говорит о том что необходимо более пристально относиться не только к использованию и подбору гербицидов, но необходимо учитывать вид посевного агрегата. А точнее густоту стеблестоя формируемую этими агрегатами.

Использование гербицидов – это стрессовая ситуация для культурных растений. Так на варианте с плоскорезной обработкой почвы и использовании гербицидов содержание клейковины составило 24,57%. Без использования - 27,77
что значительно выше хотя и не является нормой. Из проведенного описания можно сделать вывод, что лучшие результаты получены при использовании сеялки C3-5,4 без применения гербицидов. Та же тенденция наблюдалась при использовании КОС, хотя показатели имели более значительное колебание показателя при использовании различных высевающих агрегатов. Так при использование C3-5,4 содержание клейковины в зерне составило 26,40%, а с использованием гербицидов 19,57%. При использовании сеялки John Deere 730 без использования гербицида был получен уровень клейковины зерна озимой пшеницы соответствующий норме 28%. Такой же уровень клейковины наблюдался при использовании оборотного плуга LEMKEN.

В целом анализируя полученные результаты, можно сделать следующий вывод - наилучшие результаты по содержанию клейковины в зерне озимой пшеницы получены на вариантах без гербицидов, но на вариантах с плоскорезной обработкой и посеве John Deere 730, и при вспашке оборотным плугом LEMKEN при посеве C3-5,4 получены прямо противоположные результаты. В целом по опыту наиболее высокие показатели по содержанию клейковины получены при посеве посевным комплексом John Deere 730. Наилучшие результаты по обработке получены при плоскорезной обработке почвы. В целом по опыту на вариантах без обработки гербицидом получены лучшие результаты, чем с обработкой.

Проведенные исследования еще раз показали многогранность проблемы выбора способа обработки почвы, недопустимость упрощенного подхода в этом важном вопросе, что в настоящее время очень часто наблюдается при рекомендациях минимализации, без учета всех факторов, погодных условий, почв и надлежащей подготовки полей. В результате снижается урожайность и качество получаемой продукции. Поэтому требуется дальнейшее всестороннее изучение данного вопроса применительно к условиям нашей природно-климатической зоны.

Библиография:
3. Наполова Г.В., Наполов В.В., Дмитриева О.Д. Влияние различных способов обработки почвы на показатели плодородия и урожайность./В сб. Проблемы экологии и биологии земледелия и пути их решения в современном сельскохозяйственном производстве России: Изд-во Орел ГАУ, 2013. с. 45-49.
5. Рекова М.В., Наполов В.В., Наполова Г.В., Наконечный А.Г. Качество зерна озимой пшеницы при различных способах обработки почвы./В сб. Достижения науки – агропромышленному комплексу. Орел: Изд-во Орел ГАУ, 2013. с. 333-337.
НЕКОТОРЫЕ АСПЕКТЫ ВОЗДЕЛЫВАНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ В УСЛОВИЯХ БИОЛОГИЗИРОВАННОГО ЗЕМЛЕДЕЛИЯ ДЛЯ ПОЛУЧЕНИЯ СПОРТИВНОГО ПИТАНИЯ
SOME ASPECTS OF CULTIVATION OF PLANTS IN AGRICULTURE TO PRODUCE ECOLOGIZED SPORTS NUTRITION

Наполова Г.В.
ФГБОУ ВО «Приокский государственный университет»
napolov@mail.ru

Наполов В.В.
ФГБОУ ВО «Орловский государственный аграрный университет»
napolov@mail.ru

Ключевые слова: биологизация земледелия, продукция, функциональные продукты питания.

Нарушение экосистем сопряженное с внедрением научно-технического прогресса в АПК вызвало распространение нового направление в земледелии получившего название «органического», которое предусматривало полный отказ от интенсивных технологий: средств химизации и защиты растений, минимизацию обработки почвы и значительное использование ручного труда.

Низкие урожайности при высоких затратах вызвали необходимость создания нового направления развития системы земледелия, которая эффективно обеспечивала бы народное хозяйство достаточным количеством сырья, не снижая качества продовольственной продукции для населения и несла минимальный экологический риск.

Разработка и внедрение такой системы началось в 80-е годы прошлого века, получив название биологизированного сельского хозяйства. Эта система очень популярна в таких странах как: США, Бразилия, Канада, Аргентина. Аргентина, например, в течение последних 10 лет более чем в 2 раза увеличила объемы зерна производимого на площадях с использованием этой технологии, основные культуры этого производства соя, кукуруза, подсолнечник, сорго.

Рыночный характер экономики диктующий требования в переходе на энергосберегающие технологии возделывания культур продвигает систему биологизированного земледелия и в нашей стране.

Но кроме экономии текущих средств за счет сокращения числа обработок и как следствие – ГСМ, эта технология имеет ряд своих недостатков, наглядно рассмотреть которые можно на такой культуре как соя.

Популярность сои связана с высокой урожайностью этой культуры, высоким содержанием полноценного белка (до 50%), наличием витаминов группы В, железа, кальция, калия и незаменимых полиненасыщенных жирных кислот (линолевой и линоленовой). Уникальные свойства этой культуры позволяют производить из нее заменители молока и мяса.

Спортивное питание, производимое на основе соевого белка, занимает особое место среди широкого спектра соевых продуктов. Соевый протеин наиболее часто используется в спортивном, диетическом или вегетарианском...
питании. Это связано с его минимальной ценой по сравнению со всеми другими видами протеинов.

Этот вид протеина имеет некоторые недостатки. Первый, это низкая биологическая ценность белка в связи с отсутствием метионина, был ликвидирован путем обогащения соевого протеина этой незаменимой аминокислотой.

Второй - это высокая способность культуры накапливать остаточные количества пестицидов при чрезмерном их использовании. Этот недостаток назревает по мере распространения биологизации сельского хозяйства.

При классическом возделывании сои большое внимание уделяется подготовке почвы. Это значительно снижает засоренность посевов, и как следствие сокращение объемов используемых гербицидов.

Минимальное воздействие на почву влечет распространение как однолетних, так и многолетних сорняков [3, 4] которые являются очагами размножения многих болезней и вредителей, что требует дополнительных инсектицидных и фунгицидных обработок. При этом, основная пестицидная нагрузка обеспечивается за счет гербицидов.

Современная химическая промышленность для борьбы с сорняками на сое предлагает широкий спектр гербицидов. Основное внимание при возделывании этой культуры уделяется почвенным препаратам на основе таких действующих веществ: s-метолахлор (Дуал Голд), трифлуралин (Трефлан), имазетапир (Пивот), метрибузин (Зенкор), которые не только воздействуют на сорные растения, но могут оказывать некоторое влияние и на сою. Адсорбируясь корневой системой и передвигаясь по сосудистой системе, они достигают активно растущих мезистем, где вступают в реакции с аминокислотами, образуя малоподвижные метаболиты [2, 5]. В процессе реутилизации последние попадают в зерно [1].

В первые недели своей вегетации соя растет медленно. После появления первого тройчатосложного листа начинает активно формироваться корневая система, в ущерб развитию наземной фитомассы. Повышенная уязвимость культуры требует использования гербицидов по вегетирующим растениям. В фазе 1-3 тройчатосложных листьев производят обработку против двудольных сорняков, к фазе 5-7 листьев против злаковых. Против двудольных используют препараты на основе бентазон (Базагран), имазетапир (Пивот); однодольных – клетодим (Селект), флюазифоп -п- бутил (Фюзилад Форте).

При обработке по вегетирующим растениям, некоторое количество этих веществ проникает в листву через устьица и кутикулу. Их продвижение по растению связано с флюзными элементами. Образующиеся в этом случае стабильные липофильные конъюгаты с углеводами, способны к миграции и длительному отсутствию метаболизма.

В связи с этим, продукцию, используемую в качестве сырья для производства спортивного питания необходимо подвергать более тщательному контролю на остаточное количество пестицидов, для исключения попадания их в кровеносную систему, где они способны к образованию патологических дериватов. Ведь во время физических нагрузок или восстановления спортсменов, используемый в виде бельковых коктейлей соевой протеин отличается более полным и интенсивным усвоением, в котором аминокислотные конъюгаты с пестицидами должны отсутствовать полностью.
Библиография:
2. Голышкин Л.В., Сопов П.С., Митина Н.Л., Наполова Г.В., Наполов В.В. Влияние различных систем обработки почвы на особенности развития анатомических структур овса в горохо-овсяной смеси./ В сб. Пути повышения устойчивости растениеводства к негативным природным и техногенным воздействиям.
4. Наполова Г.В., Наполов В.В., Дмитриева О.Д. Влияние различных способов обработки почвы на показатели плодородия и урожайность./ В сб. Проблемы экологизации и биологизации земледелия и пути их решения в современном сельскохозяйственном производстве России. Орел: Изд-во Орел ГАУ, 2013. с. 45-49.
ВЛИЯНИЕ СТИМУЛЯТОРОВ РОСТА НА ОНТОГЕНЕЗ И ПРОДУКТИВНОСТЬ ОЗИМОЙ ПШЕНИЦЫ В УСЛОВИЯХ ЦЧР

Eфремова Ю.В., Лопачев Н.А.
ФГБОУ ВО «Орловский государственный аграрный университет»
efremowa411@mail.ru

Ключевые слова: озимая пшеница, продуктивность, активность, фермент, энергия прорастания, всхожесть, урожайность, качество.

Производство зерна озимой пшеницы во многих странах мира, в том числе и в России, является важнейшей сферой сельскохозяйственного производства [3]. В России озимая пшеница занимает около 15 млн. га посевной площади, а валовой сбор зерна составляет 40-55 млн.т. На Орловщине озимая пшеница занимает более 400 тыс. га посевных площадей и по производству зерна в расчете на душу населения - 1,9 т, что обеспечивает ей одно из первых мест в ЦФО РФ. Однако зерно озимой пшеницы характеризуется низкими качественными показателями: натуры, белка, клейковины [5,6]. Недостаток высококачественного продовольственного зерна обуславливает поиск эффективных приемов выращивания озимой пшеницы и путей стабилизации ее производства.

Важнейшим условием для получения высоких и стабильных урожаев озимой пшеницы с хорошим качеством зерна - получение своевременных полноценных и дружных всходов оптимальной густоты стояния. Поэтому стимулирование или ингибирование прорастания семян и происходящих в них процессов является актуальной современной проблемой. В настоящее время наиболее перспективным технологическим приемом является предпосевная обработка семян фунгицидами и стимуляторами роста [3,4].

В связи с выше изложенным, целью наших исследований - изучить влияние стимуляторов роста на начальные стадии онтогенеза и продуктивность озимой пшеницы.

Объектами исследования были следующие сорта озимой пшеницы: Московская 56 (эритроспермум); Бирюза (лютесценс).

Биохимический механизм действия стимуляторов роста на начальных стадиях развития озимой пшеницы изучался в лабораторном опыте [3]. Определение активности пероксидазы проводили по методике Ермакова А.И. и др. [4]. Определение активности супероксиддисмутазы сделано по методике Полесской О.Г. и др. [5].

Предпосевную обработку семян проводили следующими препаратами: Альбит- 40 мл/т, Новосил 50 мл/т, Росток – 0,5л/т, Вымпел – 0,5 л/т, Аквамикс – 100 г/т, Лариксин - 0,5л/т, Кинто – Дуо – 2л/т. Контроль обрабатывался соответствующим объемом чистой воды. Действие выше перечисленных препаратов изучалось на чистых семенах, и обработанных фуницидами. Опыт проводился в 3-х кратной повторности.

Влияние стимуляторов роста на более поздних этапах развития озимой пшеницы изучалось в полевом опыте, который был заложен в ЗАО «Орел Нобель -
Агро» Колпнянского района Орловской области. Полевой опыт был заложен по схеме лабораторного. Размещение вариантов в полевом опыте было систематическим. Площадь учетной делянки оставила 679 м² (97x7м). Почва опытного участка – чернозем выщелоченный. Кислотность его составила 5,38, содержание гумуса – среднее; фосфора - повышенное; калия, бора - высокое; марганца – среднее; серы, цинка, меди – низкое. В опыте использовалась принятая в ЗАО «Орел Нобель - Агро» технология возделывания озимой пшеницы.

Все наблюдения и анализы в лабораторном и полевом опытах проводились по общепринятым типовым методикам.

Все вышесказанное говорит о том, что изучаемые стимуляторы роста растений обладают способностью активизировать ферментативные процессы, наиболее высокие показатели активности ферментов были достигнуты при применении Аквамикса, Вымпела, а вот применение Новосила не дало увеличения активности ферментов по сравнению с контролем.

Увеличение ферментативной активности супероксидисмутазы и пероксидазы семян озимой пшеницы под действием стимуляторов роста послужило улучшению энергии прорастания и лабораторной всхожести семян. Так в результате, лабораторного опыта, установлено, что наибольшую энергию прорастания семян «Московской 56» обеспечивает применение Вымпела – 93%, Альбита и Лариксина – 91% на чистых семенах по сравнению с контролем – 87%. При применении стимуляторов роста на фоне фунгицида наибольшего значения энергия прорастания достигает при применении Вымпела – 90%, Лариксина – 90%.

При обработке стимуляторами роста чистых семян озимой пшеницы «Бирюза» повышение энергии прорастания обеспечивают Альбит и Вымпел – 92%, Росток и Лариксин – 91% по сравнению с контролем – 86%. При совместной обработке с фунгицидом наибольшего значения энергия прорастания достигают варианты Вымпел – 90%; Альбит, Росток и Лариксин – 91%.

Применение стимуляторов роста обеспечили и наибольшую лабораторную всхожесть на чистых семенах «Московской 56»: Альбит и Вымпел – 96%, Лариксин
– 95%, и на обработанных фунгицидом Альбит и Вымпел – 95%, Лариксин – 94% по сравнению с контролем – 89%. При обработке чистых семян озимой пшеницы «Бирюза» наименьшая лабораторная всхожесть отмечена при применении Альбита и Вымпела – 97%, Лариксина – 96% по сравнению с контролем 89%. При обработке на фоне фунгицида наименьшая лабораторная всхожесть установлена на вариантах Вымпел – 96%, Альбит – 95%, Росток и Лариксин – 94%.

Биохимические процессы, происходящие в семенах озимой пшеницы под действием стимуляторов роста, обеспечили повышение урожайности озимой пшеницы. Так в результате полевого опыта установлено, что на варианте Альбит и Вымпел урожайность озимой пшеницы достигла 56 ц/га, что на 43,6% выше по отношению к контролю. Применение Аквамикса, как в чистом виде, так и на фоне фунгицида оказалось менее эффективным, по сравнению с остальными препаратами - на 5 и 7% соответственно выше относительно контроля. Применение стимуляторов роста на фоне фунгицида еще более эффективно отразилось на качественных показателях зерна озимой пшеницы. Наибольший процент клейковины отмечен на вариантах Вымпел – 25,1% и Альбит – 24,8%, белка и натуры – Вымпел: 13,8% и 795 г/л соответственно.

При увеличении производственных затрат на выполнение данного агроприема отмечается снижение себестоимости 1 тонны основной продукции с 2,949 тыс.руб. на контроле до 2,259 и 2,223тыс.руб.на вариантах Вымпел и Альбит соответственно. Отмечается закономерное увеличение рентабельности с 103% на контроле до 170% при обработке семян озимой пшеницы Альбитом и 166%-Вымпелом.

Предпосевная обработка семян стимуляторами роста позволяет реализовать потенциальные возможности растений на начальных этапах развития, так увеличивается активность супероксиддисмутазы, пероксидазы. Увеличение ферментативной активности послужило улучшению посевных качеств семян, в частности энергии прорастания и лабораторной всхожести. Обработка посевного материала стимуляторами роста: так применение Альбита и Вымпела привело к повышению урожайности до 56 ц/га, а также обеспечивает рентабельность до 166% и 170% соответственно по сравнению с контролем – 103%.

Библиография:
3. Кирсанова Е. В., Цуканова З. Р., Мусалатова Н. Н. О перспективах предпосевной обработки регуляторами роста семян яровой пшеницы в Орловской области // Вестник ОрелГАУ 2008 №3
4. Лопачев Н.А., Амелин А.А., Ефремова Ю.В., Мельников В.П. The influence of biostimulants of growth and antifungals on productivity and quality of the brewing barley in the Oryol Region// Вестник ОрелГАУ- 2013.- №6.- С.18-24.
АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА ПЛОДОРОДИЯ КАШТАНОВЫХ ПОЧВ СУХИХ СТЕПЕЙ
AGROECOLOGICAL ESTIMATION OF FERTILITY OF CHESTNUT SOILS OF DRY STEPPES

Ерохина В.А., Илюшина Н.И., Репина Е.Ю., Алексина Ю.А., Ермакова О., Степанова Л.П.
ФГБОУ ВО «Орловский государственный аграрный университет»
agro-decanat@orelsau.ru

Ключевые слова: почвы, плодородие, гумус, смытость.

Каштановые почвы распространены в зоне сухих степей на засоленных породах. Степень солонцеватости выражена сильнее на тяжелых породах и в нижних частях склонов, а также в различных понижениях, где концентрируются легкорастворимые соли. Растительный покров представлен злаково-полынными ассоциациями. Водный режим почв непромывной. Природные условия зоны обусловливают развитие таких основных почвообразовательных процессов, как гумусово-аккумулятивный процесс, накопление и перераспределение карбонатов, накопление и перераспределение легкорастворимых солей.

Гумусово-аккумулятивный процесс ослабевает от чернозема южного до светло-каштановой почвы, что приводит к уменьшению гумусового горизонта, снижению гуминовых кислот, связанных с катионом кальция, увеличению содержания фульвокислот, а резкие колебания отношения между дефицитом влаги и количеством тепла приводят к уменьшению фотосинтезируемой фитомассы, узкому распределению корневых систем растений и росту почвенных микроорганизмов, минерализующих почву снижают количество гумуса.

Накопление и перераспределение карбонатов протекает в профиле почвы в виде белоглазки и сплошных прослоек, наряду с прослойками карбонатов встречается гипс. Накопление и перераспределение легкорастворимых солей проявляется в накоплении в гумусовом горизонте катиона натрия, что приводит к проявлению солонцеватости, поэтому для зоны сухих степей характерным является наложение солонцового процесса почвообразования на дерновый.

Морфологическое строение профиля отражается следующим чередованием генетических горизонтов: Ад0 З А322 В12241 Вкр4172 ВСк72118 Ск1181

Ад - слабо выраженная дернина.

А - гумусовый горизонт темно-каштанового или светло-каштанового цвета с буроватым оттенком, комковатой или комковато-пылеватой структурой.

В1 - гумусовый переходный горизонт серовато-буровой окраски, крупнокомковатой, а в солонцеватых разновидностях комковато-призмовидной или призмовидно-ореховатой структуры буровато-коричневой лакировкой на границах структурных отдельностей, придающей горизонту более темную окраску и коричневатый (каштановый) оттенок.

Вк - иллювиальный карбонатный горизонт буровато-желтого цвета, призмовидной или призмовидно-ореховатой структуры, часто плотного сложения от наличия в нем карбонатов и солонцеватости.
Карбонаты выделяются в виде ярко-белых пятен белоглазки, примазок или мицелия, что связано с провинциальными особенностями образования каштановых почв.

ВСк - переходный горизонт в почвообразующую породу, обычно темно-буровый, наличие темно-серых пятен, ореховато-призматической структуры, вскипает от соляной кислоты, переход языками, затеками.

Ск - почвообразующая порода, более светлая и однородная по окраске, более рыхлого сложения, с очень редкими пятнами карбонатов или без них, с вкраплениями гипса в виде друз, гнезд, переходными зонами. Глубина скопления гипса в легко растворимых солях определяется подтипов каштановых почв, а в пределах одного подтипа - степенью солонцеватости, гранулометрическим составом почв, породы и рельефом местности.

Содержание гумуса исследуемой почвы варьирует в пределах 1,6-2,6% в гумусом слое. В составе гумуса соотношение гуминовых и фульвокислот приближается к 1 и составляет 0,8-0,9, что свидетельствует о выраженности качественного состава гумуса и оценивается как гуматно-фульватный тип гумуса.

Запас гумуса в метровом слое почвы достигает 209 тонн на га и оценивается как средний запас гумуса. Интерес представляет данные, характеризующие обогащенность гумуса азотом, в верхнем горизонте он составляет 8,87 ед. и оценивается как средняя обогащенность гумуса азотом. При этом в нижней части гумусового слоя обогащенность гумуса азотом возрастает солонцеватости от 2 до 2,6%. Емкость поглощения составляет 18-22 ммоль/(экв)/100 г почвы, достигая в сильно солонцеватых 30.

Реакция среды каштановых почв в гумусовом слое нейтральная (pH 6,8) и переходит в слабощелочную в нижней части профиля почвы. В составе обменных катионов помимо обменных катионов кальция и магния присутствует обменный натрий. Количество обменного натрия колеблется в пределах 0,44-0,18 мг экв на 100 г почвы и составляет 1,0-2,3% от величины ЕКО. Емкость катионного обмена в гумусовом горизонте достигает 19,2 мгэкв на 100 г почвы. Такая величина емкости поглощения характеризует каштановую почву как малобуферную с низкой устойчивостью к антропогенным воздействиям и химическим загрязнениям. В элювиальном карбонатном горизонте отмечается некоторое увеличение частиц ила.

На каштановых почвах возможно выращивание зерновых, технических, плодовых, овощных культур при условии проведения комплекса мероприятий по накоплению и сохранению влаги в почве. Для таких почв необходимо охрана от ветровой эрозии вторичного засоления применения минеральных и органических удобрений и создание из них продуктивного травостоя из-за засухоустойчивых культур.
АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА ФОРМИРОВАНИЯ СОЛОНЦОВ, ИХ СОСТАВ И СВОЙСТВА
ENVIRONMENTAL ASSESSMENT OF THE CONDITIONS OF FORMATION OF SALT MARSHES, THEIR COMPOSITION AND PROPERTIES

Шелкова А.О., Степанова Л.П.
ФГБОУ ВО «Орловский государственный аграрный университет»
agro-decanat@orelsau.ru

Ключевые слова: солонцы, плодородие, состав почвы.

Возникновение засоленных почв связано с континентальным накоплением солей в результате выветривания и почвообразования; их перераспределением во внутриматериковых бесточечных областях; приморским соленакоплением в прибрежно-морских низменностях; дельтовым накоплением солей, приносимых речными, долинно-дельтовыми потоками и поступающими со стороны моря.

К солончакам относятся почвы, содержащие большое количество водорастворимых солей с самой поверхности и в профиле. В зависимости от химизма засоления соли в верхнем горизонте солончаков составляют от 0,6-0,7 до 2-3% и более.

Солончаки встречаются в суббореальном поясе. Суббореальный пояс занимает 20 % площади России. Развитие солончаков приурочено преимущественно к низинам, приозерным террасам, днищам сухих озер, приморским низменностям, понижениям рельефа в оазисах и т. д.

Образование солончаков в условиях сухой степи и выпотного типа водного режима, где величина испарения превышает сумму атмосферных осадков, может происходить самыми различными способами. Прежде всего причиной высокого содержания легко растворимых солей в почве может являться сама почвообразующая порода, богатая солями. При выветривании пород образуется значительное количество растворимых солей. Много легкорастворимых солей может образоваться при извержении вулканов; выделяющиеся газы и пары содержат серу, хлор, которые переходят в хлориды и сульфаты.

Большое значение в образовании солончаков имеет растительность. Растительный покров на солончаках неоднородный и определяется характером их засоления и содержанием солей. На солончаках растительность изрежена.

Основными почвообразующими процессами являются засоление и оглеение (необязательный).

Засоление - повышение содержания легкорастворимых солей. Оно может быть вызвано, например, привнесением солей грунтовыми и поверхностными водами. Наиболее часто засоление вызывается нерациональной системой орошения земель. Почвы считаются засоленными при содержании в них более 0,1% по массе солей, токсичных для растений.

Естественное засоление почв характерно для территорий с аридным климатом. Оно происходит в результате подтягивания солей к поверхностным слоям почвы из грунтовых вод и коренных отложениях при восходящем движении влаги. Влага по мере вертикально восходящего движения испаряется, а содержащаяся в ней соль откладывается на стенках первых пространства почв.
Высоким природным засолением обладают почвы пустынь и полупустынь.
Больше засолены почвы, образующиеся на коренных породах с высоким природным засолением и при неглубоком (менее 3 м от поверхности земли) залегании грунтовых засоленных вод.

В естественных условиях процесс идет медленно, но он существенно усиливается (вторичное засоление) и становится настоящим бедствием при орошаемом земледелии.

Аккумуляция солей в почвенных горизонтах обусловлена следующими причинами: поступлением солей из засоленных грунтовых вод; перераспределением солей поверхностными и почвенно-грунтовыми водами; переносом солей ветром с поверхности солончаков, соленых озер, морей; переносом солей ирригационными водами из засоленных почвообразующих и подстилающих пород.

Оглеение - преобразование почвенной массы в результате постоянного или периодического застойного переувлажнения, создающего восстановительные условия в почве. Образуются соединения зеленовато-голубоватого цвета, что придает сизую, зеленоватую, голубоватую окраску почве (рис. IV, VI). Оглеение, в отличие от оподзоливания, приводит к утяжелению гранулометрического состава почв в результате диспергации минералов.

Оглеение может быть связано с грунтовыми водами, верховодкой и поверхностным переувлажнением. Так, на лесных тропинках в результате уплотнения и периодического переувлажнения почв формируется маломощный глеевый горизонт.

Высокое содержание солей в солончаках определяет особенности строения их профиля и свойства:

\[S(g) - Gs - Gs \]

Профиль солончаков морфологически слабо дифференцирован. Солончаковый горизонт \(S \) имеет оливково-палевую или серую окраску, бесструктурный и мало отличается от нижележащей толщи. Для него характерны обильные выделения солей в виде мелкокристаллических скоплений – прожилок и гнезд, присутствуют карбонаты и гипс. В сухом состоянии поверхность горизонта \(S \) покрыта солевой коркой толщиной от 0,5 до 2-3 см и (или) выцветами солей. Вскипание с поверхности. В профиле солончаков отмечаются сизые и ржавые пятна, а с 1-2 м и более ярко выраженные признаки оглеения. Грунтовая вода соленая, залегает на глубине 2-5 м. При более высоком положении грунтовых вод (1-2 м) под светлоокрашенным солончаковым горизонтом \(Sg \) лежит зеленовато-синий глеевый засоленный горизонт \(Gs \), сменяющийся засоленной глеевой почвообразующей породой \(CGs \).

Солончаки относятся к малогумусированным почвам, как видно из данных таблицы, содержание гумуса в слое 0-3 см составляет 2,15%, а в слое 3-20 - 1,75%, практически запас гумуса в гумусовом 20 см слое составляет 48,73 т/га, а в метровом слое почвы - 140,5 т/га, что оценивается как низкий запас гумуса. Обогащенность гумуса азотом низкая, C:N - 13,86-14,5 единиц. В составе гумуса солончаков преобладают фульфокислоты.

В составе обменных катионов присутствуют обменные основания катионов Ca2+, Mg2+ и Na+, при этом количество обменного натрия является высоким и...
достигает 15,1 мг-экв/100 г почвы в самом верхнем слое 0-3 см, что составляет 47,8% от величины ЕКО и является характерным признаком наличия солевой корки на поверхности солончака. Вниз по профилю почвы количество обменного натрия снижается, но остается высоким, достигающим 3,6-8,9 мг-экв/100 г почвы или 33,4-35,7% от величины емкости поглощения. Наличие обменного натрия в составе ППК обуславливает следующие неблагоприятные свойства, а именно щелочную реакцию среду, высокое осмотическое давление почвенного раствора, которое тяжело переносят растения, пептизацию почвенных коллоидов и т. д. Пептизирующий эффект обменного натрия обуславливает неблагоприятные физико-химические и физические свойства солончаков: высокое набухание и липкость при увлажнении, низкую фильтрационную способность, глыбистость и высокую твердость при высыхании.

Значительное количество солей в солончаках приводит к повышению гигроскопичности почв и осмотического давления почвенного раствора до 10-30 МПа, что затрудняет поступление воды в растения. Проникновение солей в растения нарушает поступление необходимых питательных веществ. Сода вредна растениям уже при концентрации 0,005%, концентрация других солей выше 0,04% снижает урожай растений.

Засоление почвы вызывается хлоридами (хлористым натрием, кальцием), сульфатами (преимущественно сульфатом натрия), карбонатами (карбонатом натрия).

Солончаки чаще отводят под летние, осенние и зимние пастбища, но они имеют очень низкую продуктивность. Для возделывания сельскохозяйственных культур необходимо проводить серьезные мелиоративные мероприятия.
DNDC MODELLING OF CARBON AND NITROGEN BALANCE IN CROPLANDS OF MOSCOW REGION

Sukhoveeva O.E.
Institute of Geography of Russian Academy of Sciences, Moscow, Russia
olgaskhoveeva@gmail.com

Key words: greenhouse gases, carbon balance, nitrogen balance, DNDC model.

Anthropogenic emission of greenhouse gases (GHG) considered one of the lead causes of current climate changes. Agriculture is responsible for about 12-13% of global GHG emissions. Part of these is emitted via cycling of biogenic elements in soils that can be evaluated by some mathematics and statistics methods.

Model DNDC (DeNitrification-DeComposition) was created in the Institute for the study of Earth, Oceans, and Space, University of New Hampshire [1]. It allows to model carbon (C) and nitrogen (N) biogeochemistry in agricultural ecosystems. The DNDC model may be applied in a wide range of geographical regions, including Russia. Model’s input block has three data levels: climate, soil and cropping. The results of modelling are presented by 50 output parameters.

The main tasks for our research were:
• Analysis of the ratio between the main parameters of C and N balance in croplands,
• Evaluation of directions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes in agroecosystems,
• Modelling of the dynamics of soil organic carbon (SOC), N and GHG fluxes in croplands.

The modelling process is complicated and may produce some errors and displacements. Therefore in some cases it is necessary to evaluate the relative characteristics of C and N fluxes, such as N and C storage in the soil and GHG emissions and its proportionality.

For modelling the most significant soil characteristics include clay fraction, bulk density, pH and SOC content at surface soil (0-10 cm). To obtain initial data we used literature reference sources for ploughed soils of Moscow region [2]. Average parameters of typical cropland soil in Moscow region were assumed as follows: clay fraction 27%, bulk density 1,25 g/sm3, pH 5,5, SOC 0,0146 kg C/kg soil.

Average meteorological conditions (maximum and minimum air temperatures and precipitations) were taken from climate data of All-Russia Research Institute of Hydrometeorological Information – World Data Centre (RIHMI-WDC) [3]. Temperature and precipitations data were calculated as average values between 3 meteorological stations: VDNH, Mozhaisk, and Kolomna for the period 2008-2013.

As exemplary crops for our modelling the most common annual crops in Moscow region were taken: spring wheat (grain crop) and potato (row crop). We have corrected thermal degree days required for maturity for these crops and its water demand (as it was in DNDC) in accordance with biological characteristics of crops varieties cultivated in European Russia [4].

For cropping system parameters we have specified crop yields, amount and types of fertilizers and manure applied on the base of the Federal State Statistics Service (FSSS) data [5]. Information about the depth of ploughing and tillage were taken from
literature sources. The challenge in the setting up the input parameters was to find out actual Julian days of seeding, harvesting, plowing, fertilizing and etc. As a rule the average dates for Central Non-Black Soil area were taken from literature data [4].

Four steps of cropping system had been modeled:
 • Spring tillage (depth 10 cm), ½ norm of nitrate fertilizers (50 kg N/ha);
 • Crop sowing;
 • Crop harvesting;
 • Autumn ploughing moldboard (depth 20 cm), ½ norm of nitrate fertilizers (50 kg N/ha) and manure (7400 kg C/ha and 400 kg N/ha).

Influence of model’s parameters on N and C balance and GHG dynamics forms a progression. This progression had been analyzed as following five model’s simulations:
 1. Soil + Climate;
 2. Soil + Climate + Crops;
 3. Soil + Climate + Crops + Tillage;
 4. Soil + Climate + Crops + Tillage + Fertilizers;
 5. Soil + Climate + Crops + Tillage + Fertilizers + Manure.

At the each next step, all the previous parameters have been summarized and considered as constant and the one new parameter (option) has been added to the input block. The combination of “soil” and “climate” was accepted as basic index for all model simulations. For other parameters (options) the ratio and coefficients of proportionality (for improving of modelling results accuracy) have been estimated.

Initial modelling of SOC in croplands of Moscow regions showed that results of DNDC running are sensitive to the changes of all parameters, but the most significant factor is a percentage of clay fractions in soil and manure amount.

We have assumed that root N input, irrigation N input, N fixation, N runoff, and dissolved organic carbon (DOC) leaching are equal to zero in our research. Results of all simulations showed that annual fluxes of NO and N2 from soils are very small and are around of zero. Such results as NH3 volatilization, N2O flux, atmospheric N deposit, and N leaching aren’t sensitive to the change of modelling conditions. Average NH3 volatilization is equal to 0,44 ± 0,16 kg N/ha and it rises under manure application only. N leaching (0,52-1,58 kg N/ha) increases if manure is applied as well (by 200 times). N2O flux (0,41 – 1,34 kg N/ha) and CH4 emission (0,37 ± 0,07 kg C/ha) don’t depend on environmental conditions either. Atmospheric N deposit (6,65 ± 1,53 kg N/ha) depends on soil characteristics and meteorological conditions only.

Values of crop stub N input, N uptaken by crops, crop shoot C input, crop root C input, and root C exudation are higher under management with fertilization of soils than without it.

For five model simulations we have obtained following values of N storage in soils:
 • 1 : -2,5 : -3,8 : 5,9 : 128,6 for potato;
 • 1 : -1,3 : -1,0 : 16,6 : 137,9 for spring wheat.

N content in the fallow soil was accepted as a control. It is decreasing and may change to negative (N losses from the soil) under conditions of cropping and tillage. The effect of using fertilizers is N increase by ten times compared to fallow soils, and manure application – by 133 times.

For five model simulations we have obtained following values of the CO2 emission:
 • 1 : 1,6 : 2,9 : 3,2 : 20,7 for potato;
 • 1 : 1,2 : 3,7 : 2,4 : 22,0 for spring wheat.
Simulations showed that CO2 fluxes from soil under potato and spring wheat were almost the same. Manure is the most significant factor that determines CO2 emission. Under different weather conditions average CO2 absorption by soil under spring wheat is about 125 kg C/ha. For potato and fallow CO2 emission varies from 69 to 316 kg C/ha and from 194 to 276 kg C/ha respectively.

For five model simulations we have obtained following values of SOC storage:
- -1 : -0.4 : -0.6 : -0.5 : 19.8 for potato;
- -1 : 0.1 : 0.6 : 6.0 : 24.4 for spring wheat.

Losses of C in the soil were marked for the option when potato is growing, the only case of C accumulation obtained if manure is applied. Growth of spring wheat gives opportunity to absorb this element in the soil with average rates from 27 to 215 kg C/ha. These results confirm our previous conclusions on possibility to emit CO2 in the atmosphere from croplands soil if there are sand texture or row crops and to absorb atmospheric CO2 in case of clay soil, and cover or grain crops [6].

The decrease of C stock in fallow soil is due to CO2 emission resulted from mineralization of soil organic matter. Under cropping conditions, CO2 emission is rising by a quarter. However, these C losses are almost equal to the opposite flux of the plant residue C input. Therefore, without fertilizers annual C balance is about the zero. Under tillage conditions, CO2 emission is increasing more than three times comparing to fallow soils. CO2 emissions as well as C storage are simulated to increase if fertilizers and manure (more than 20 times) were applied. Such significant increase of CO2 emission is the result of the rise of soil microflore activity.

For five model simulations we have obtained following values of Net Global Warming Potential (Net GWP):
- 1 : 0.4 : 0.6 : 0.8 : -16.6 for potato;
- 1 : -0.1 : -0.6 : -4.8 : -19.8 for spring wheat.

According to data obtained Net GWP (summary flux of all GHGs) changes from emission to the atmosphere (e.g. fallow soil and soil under potato) to the absorption of GHGs in the soil covered by crops (e.g. spring wheat).

References:
2. Лыков А.М., Еськов А.И., Новиков М.Н. Органическое вещество пахотных почв Нечерноземья (актуальность и состояние проблемы, рабочие гипотезы исследования, сопряженность агрономических и экологических функций, динамика в агроценозах, принципы моделирования и технологии воспроизводства: монография. М.: Россельхозакадемия. ГНУ ВНИПТИОУ. 2004. 630 с.
3. Специализированные массивы для климатических исследований: Информация ВНИИГМИ-МЦД. http://aisori.meteo.ru/ClimateR
НОВЫЙ МОРФОТИП ГОРОХА И ОЦЕНКА ПЕРСПЕКТИВЫ ЕГО ИСПОЛЬЗОВАНИЯ В ЧИСТЫХ И СМЕШАННЫХ ПОСЕВАХ
NEW MORPHOTYPE OF PEAS AND ASSESSMENT OF THE PROSPECTS FOR ITS USE IN PURE AND MIXED CROPS

Зеленов А.А.
ВНИИЗБК, Орловская область, Россия
zelenov-a-a@ya.ru

Ключевые слова: горох, мофотипы, посевы, источник белка.

В мировом сельскохозяйственном производстве зернобобовые культуры имеют большое значение в качестве источников кормового и пищевого белка. Значительная доля среди них принадлежит гороху. При этом наибольшее распространение получили сорта с усатым типом листа, благодаря своей устойчивости к полеганию и высокой технологичности.

За последние десятилетия в селекции гороха достигнут существенный прогресс. Ретроспективный анализ результатов длительной селекции за столетний период показал, что в условиях Центральной России урожайность семян возросла в 2,5 раза. Увеличение произошло за счёт трансформации регуляторных факторов продукционного процесса путём изменения донорно-акцепторных отношений между вегетативной частью растений и семенами, усиления их аттрактивной активности и увеличения реутилизации веществ из вегетативных органов. Благодаря этому, уборочный индекс повысился до 50–55%, а в засушливые годы даже до 65% и приблизился к биологически возможному пределу. Однако, общая продуктивность биомассы растения за все это время не увеличилась. Исходя из этого, максимально возможная урожайность семян, определяемая биоэнергетическим потенциалом современных листочковых и усатых сортов гороха, в условиях Центральной России может составить 5,5–6,0 т/га, при содержании белка в них 22–23%. Константность биомассы в процессе длительной селекции сортов гороха башкирской селекции отмечена В.Х. и В.В. Хангильдиными. Такая же закономерность отмечена у пшеницы, ячменя, риса, кукурузы и других культур. Х. Шмальц обратил внимание на то, что «возделывавшиеся примерно с 1830 г. сорта зерновых культур синтезировали почти столько же веществ, что и наши современные сорта».

В свете вышесказанного был сделан вывод, что селекция этой культуры на урожайность семян путём увеличения уборочного индекса и использования семенами элементов питания свои возможности почти исчерпала и дальнейший прогресс представляется наиболее успешным за счёт увеличения биоэнергетического потенциала.

Биоэнергетический потенциал определяется количеством усвоенной растением солнечной энергии и выражается энергоёмкостью его массы с учётом энергозатрат на жизнедеятельность, формирование составляющих веществ (углеводы, белок, жир и др.), механизмов адаптации и других структур. В упрощённом виде биопотенциал чаще всего обозначают массой надземной части растения в фазу полной спелости. Консерватизм биопотенциала обусловлен интегрированной системой блоков коадаптивных генов генома и поддерживается регулярными связями, координирующими гомеостаз роста и развития.
В связи с этим, условием дальнейшего повышения урожайности у новых сортов гороха является увеличение общей биомассы растения. И во Всероссийском НИИ зернобобовых и крупняных культур за последние годы получены формы, которые по своей продуктивности биомассы и потенциально возможной урожайности превосходят современные сорта. Одна из таких форм – рассечённолисточковая, обладающая высокой интенсивностью фотосинтеза.

Недостатком рассечённолисточковой формы гороха, влияющей на реализацию её урожайного потенциала, является полегаемость стебля. Для её устранения предложен совместный посев новой формы с устойчивым к полеганию компонентом. Однако, подбор компонентов для создания эффективных смешанных посевов представляет собой сложный процесс, так как в сортосмеси оба элемента должны дополнить друг друга, и не вызывать угнетения.

В связи с этим для подбора компонентов и создания наиболее эффективных сортосмесей проведено изучение особенностей продукционного процесса у различных линий рассечённолисточкового морфотипа в чистых и смешанных посевах.

Цель исследований – дать физиологическую характеристику рассечённолисточковому морфотипу и оценить перспективы его использования как в чистых и смешанных посевах.

Задачи исследований:
1. Изучить физиологические особенности продукционного процесса и адаптивных свойств у различных линий гороха рассечённолисточкового морфотипа
2. Оценить возможности повышения устойчивости к полеганию линий Рас-типа путем выращивания их в смешанном посеве с усатым сортом Батрак
3. Изучить реакцию различных линий Рас-типа на смешанный посев и выделить наиболее эффективные компоненты.
4. Дать экономическую оценку выращивания сортосмесей гороха с разной архитектоникой растений

Рассечённолисточковая форма гороха впервые обнаружена во ВНИИЗБК в 2002 г. как спонтанный мутант в посевах размножения короткостебельного, детерминантного (deh), безлисточкового, с неосыпающимися семенами сорта Батрак. Мутант имеет необычные как для рода Pisum L., так и для семейства Fabaceae Lindl. вообще листья с глубокорассечёнными в верхней части листочками и простыми неветвящимися усиками, отходящими от черешка у основания листочков.

Рассечённолисточковая форма гороха характеризуется формированием большей, по сравнению с исходным сортом, биомассы с повышенным накоплением белка в семенах.

Исследования, проведенные в Орловском Государственном Аграрном Университете и МГУ им. Ломоносова, показали, что растения рассечённолисточкового гороха отличается высокой интенсивностью фотосинтеза. Так, например, в фазу плоского боба у линии Рас-657/7 этот показатель составил 16,53 µmolCO2/ m2s, у стандартного сорта Орловчанин – только 11,56 µmolCO2/m2s. Фотосинтез – ключевое звено продукционного процесса. Однако связь между интенсивностью фотосинтеза и урожайностью выражена слабо. Необходимыми звеньями являются величина и деятельность...
корневой системы, дыхание, водный режим, транспорт ассимилятов в растении, аттрагирующая активность семян как органов запаса и другие физиологические процессы. Все эти звенья должны быть объединены регуляторными связями в единую, оптимально функционирующую цепь и застрахованы системами защиты от биотических и абиотических стрессов.

Большинство образцов новой формы имеют повышенное содержание белка в семенах.

Многие линии нового морфотипа обладают отличными симбиотическими показателями при инокуляции Rhizobium leguminosarum bv. viciae и грибами арбускулярной эндомикоризы Glomus intraradices и Glomus fasciculatum. Это открывает перспективу для создания сортов с высоким потенциалом накопления азота в растении и использования ресурсосберегающей технологии возделывания.

Рассечённолисточковая форма склонна к полеганию, что отрицательно влияет на семенную продуктивность. В связи с этим для реализации урожайного потенциала был выбран способ одновидовых смешанных посевов с опорным компонентом.

Получение стабильно высоких урожаев является одной из ключевых задач в современном земледелии. Программирование урожайности – основой метод создания оптимальных условий для осуществления высокой фотосинтетической деятельности растений, экологизации технологии возделывания и получении дешевой продукции высокого качества, что позволяет выращивать стабильно высокие урожаи. Для создания таких высокопродуктивных ценозов следует использовать смешанные посевы.

К.А. Тимирязев в своей книге «Памяти Дарвина», приводит мысль самого Чарльза Дарвина: «Чем разнообразнее население [ценоза], тем оно может быть многочисленнее. Это подтверждает статистика любого ключка луга, любой пришлой флоры, завоёвывающей себе новые места в природе».

О перспективе возделывания смешанных посевов также говориться в книге Н.В. Тимофеева-Ресовского и др. «Краткий очерк теории эволюции»: «Разумное изменение природы – «управляемая эволюция» – в будущем связано с освоением вместо современных сельскохозяйственных монокультур (только зерновых, только бобовых, только овошных и т.п.) – поликультур; оно может и должно привести к повышению биологической производительности Земли. А такое повышение производительности Земли становится одной из главных задач человечества».

Лауреат Нобелевской премии Норман Борлоуг в качестве очередного этапа зелёной революции определил теорию и практику смешанных посевов.

Многовидовые смеси для использования вегетативной массы на корм известны давно, и они широко возделываются во всем мире. Полегающие сорта гороха на зерно можно выращивать в смеси с овсом, ячменем, горчицей. Но их урожай впоследствии приходилось разделять, а это дополнительные затраты. Хорошо известны примеры эффективного использования одновидовых сортосмесей на зерно при возделывании пшеницы, риса, хлопчатника, льна, гибридов кукурузы и других культур.

Сортосмеси должны быть созданы, а не просто смешаны. По мнению А.А. Жученко, следует вести целенаправленную селекцию компонентов для сортосмесей и сортов-популяций, что является основой для своевременной
адаптации культур к погодным и другим флуктуационным факторам внешней среды за счет биологической взаимокомпенсации.

В предшествующих исследованиях установлено, что при совместном посеве исходного мутанта с сортом Батрак увеличивается устойчивость ценоза к полеганию и повышается урожайность семян сортосмеси. Однако, впоследствии были созданы новые линии этого морфотипа, различающиеся по своим биологическим и хозяйственным показателям. В связи с этим для подбора компонентов и создания наиболее эффективных сортосмесей проведено изучение особенностей продукционного процесса у различных линий рассеченнолисточкового морфотипа в чистых и смешанных посевах.

Библиография:
3. The feasibility of small grains as an adoptive strategy to climate change / Authorsvodziwa M. // Russian Journal of Agricultural and Socio-Economic Sciences. 2015. Т. 41. № 5. С. 40-55.
БУРЫЕ ПУСТЫННО-СТЕПНЫЕ ПОЧВЫ
BROWN DESERT-STEPPE SOILS

Башакин Р.О., Степанова Л.П.
ФГБОУ ВО Орловский ГАУ
agro-decanat@orelsau.ru

Ключевые слова: горох, мофотипы, посевы, источник белка.

Бурые пустынно-степные почвы формируются в полупустынной зоне Западного Прикаспия в условиях аридного климата преимущественно на песчано-супесчаных отложениях. Растительный покров изнежен, беден по видовому составу, проективное покрытие составляет 20-40%. Растительность представлена злаково-полынными сообществами. Формирование профиля бурых пустынно-степных почв происходит в результате развития таких процессов почвообразования как, гумусово-аккумулятивный, элювиально-иллювиальное перераспределение карбонатов, выщелачивание гипса и легкорастворимых солей, их аккумуляция в нижней части профиля.

Профиль бурых пустынно-степных почв легкого гранулометрического состава характеризуется растянутостью и слабой дифференцией. Гумусово-аккумулятивный горизонт А слабо покрыт гумусом, в окраске преобладают бурые тона. Переходный ABc горизонт, достигающий глубины 25-40 см, имеет бурую окраску, несколько уплотнен, крупнокомковатой структуры. Он сменяется карбонатно-иллювиальным горизонтом Вc белесовато-бурым, с редкими известняковыми пятнами или мучнистой присыпкой. Вскапание начинается с глубины 15-20 см, выделение гипса незначительное, отмечается в пределах второго полуметра и даже глубже 200 см. Наличие легкорастворимых солей зависит от состава почвообразующей породы. Выцветы лекарственных солей и скопления гипса обнаружены с глубины 78 см.

Бурые пустынно-степные почвы бедны гумусом (0.7-1.4%). В составе гумуса преобладают фульвокислоты(Sкр/Сфк<1). Реакция среды в верхних горизонтах слабощелочная, в нижних щелочная. Емкость поглощения низкая 3-10 ммоль(экв.)/100 г почвы в супесчаных разновидностях. Поглощающий комплекс почти полностью насыщен кальцием и магнием, причем поглощенный магний может составлять 20-25% суммы поглощенных оснований, в то время как натрий присутствует в ничтожных количествах (1-1.5% суммы). Чем легче гранулометрический состав почвы, тем больше растянуть по глубине почвенный профиль, но при этом уменьшается содержание гумуса, подвижных питательных элементов, емкость поглощения, глубже вымыты карбонаты и соли.

Главные факторы, лимитирующие сельскохозяйственное использование бурых пустынно-степных почв, - недостаток влаги. При орошении возможно выращивание ценных культур-зерновых, бахчевых, овошных, плодовых. В зоне бурых пустынно-степных почв традиционно пастибническое животноводство, особенно овцеводство. Продуктивность пастбищ также повышается путем орошения, применение фосфорных и азотных удобрений. При орошении необходим комплекс мероприятий по предотвращению развития засоления и осолонцевания, высока опасность развития ветровой эрозии.
ФИТОСАНИТАРНЫЙ ПОТЕНЦИАЛ В ЗАЩИТЕ ЗЕРНОБОБОВЫХ РАСТЕНИЙ ОТ ПАТОГЕННЫХ ГРИБОВ

PHYTOSANITARY CAPACITY IN THE PROTECTION OF LEGUMINOUS PLANTS FROM FUNGAL PATHOGENS

Зоров А.А.
ФГБНУ Оренбургский научно-исследовательский институт сельского хозяйства, Оренбургская область, Россия

Сычева И.И.
ФГБНУ ВНИИФ, Московская область, Россия

Зеленов А.А.
ВНИИЗБК, Орловская область, Россия
zelenov-a-a@ya.ru

Ключевые слова: защита растений, грибы, зернобобовые культуры.

Применение удобрений и средств химической защиты растений в агроценозах является одним из главных источников антропогенного воздействия на почвенный покров. На больших площадях уменьшается биологическое разнообразие. Этому способствует укрупнение обрабатываемых площадей, переход к севооборотам с короткой ротацией и к монокультуре, минимизация обработки почвы, распространение однородных сортов и гибридов, широкое применение пестицидов. В результате нарушается саморегуляция, ухудшается фитосанитарное состояние агроценозов, появляются и накапливаются агрессивные биотипы патогенов. Подавление защитных функций почвы ведет к росту инфекционного фона. Восстановление ее биологической активности - процесс медленный и измеряется десятилетиями.

Существенные изменения отмечены в отношении сапротрофных грибов, некоторые виды которых перешли к паразитическому образу жизни, поражая генеративные органы растений. В ряде регионов обнаружено новое явление - неинфекционные физиологические болезни растений, связанные с нарушением режима питания, балансом питательных элементов в почве и экстремальными погодными условиями.

К особо опасным заболеваниям растений в настоящее время относят: серую гниль зернобобовых культур, фузариозы зерновых и зернобобовых культур. В современном земледелии эти поражения относят к болезням интенсивного агроценоза. Для них характерна слабая видовая специализация возбудителей, ареал которых включает все континенты и совпадает с регионами возделывания многих культур, наличие сапротрофных стадий развития, связанных с почвой, пролонгированная чувствительность растения-хозяина к патогенам. Устойчивость растений к данным патогенам выше при дозах и соотношении элементов питания, близким к оптимальным для обеспечения их продуктивности. Минеральные удобрения, независимо от вида, не индуцируют инфекционный процесс, если используются для снятия дефицита элемента в почве. Большую опасность представляют фитопатогенные грибы, приуроченные к малым ареалам возделывания культур, например, возбудители фузариоза.
Фитосанитарное оздоровление агроценозов - таким образом, многоуровневая задача, которая достигается обеспечением генетической гетерогенности возделываемых культур, повышением иммунитета растений, применением агрохимических, химических и микробиологических средств защиты растений.

Цель исследования оценка роли агрохимических средств и свойств почв, различающихся по генезису и плодородию, в регулировании фитосанитарной ситуации в агроценозах, в формировании супрессивных свойств почвы. Поиск агрохимических приемов, повышающих активность защитных механизмов у растений к патогенным грибам.

Действие этих приемов следует рассматривать как временный эффект. Ценность их состоит в радикальном воздействии на почву как фактора передачи инфекции и среды обитания патогена, а также и растения-хозяина. Чем выше паразитическая специализация возбудителей, тем выше эффективность приемов, направленных на оздоровление почвы от фитопатогенных почвенных грибов.

Влияние каждого из факторов тесно коррелирует с поченно-климатическими условиями. Даже такой прием фитосанитарной очистки почвы как внесение органических удобрений, обеспечивает регулирование агроценоза с разной интенсивностью.

В условиях почвы подавление активности патогенных грибов и ограничение их развития очень затруднено. На эти процессы влияют физико-химические свойства почвы: природа глинистых минералов, кислотность, содержание гуминовых кислот, углекислоты и кислорода, а также температурный, водный режимы и др. Перечисленные факторы окружающей среды способны ограничить развитие популяции и активность фитопатогена в почве, но не приводят к их гибели.

Супрессивность почв в агроценозе увеличивают: легкогидролизуемое органическое вещество, пожнивные остатки и сидеральные культуры; внесение подстилочного навоза и компостов с включением навоза, регулирование pH почвы за счет известкования, внесение определенных видов и форм минеральных удобрений, особенно калийных, севооборот и растения-фитосанитары.

Супрессивность почв в агроценозе снижают химические стрессоры, а именно – жидкий бесподстилочный навоз, высокие и супервысокие дозы минеральных удобрений, поверхностное или локальное их внесение, средства химической защиты растений – гербициды и пестициды, монокультура и короткоротационные севообороты.

Индуктированная супрессивность связана с региональной системой земледелия. Например, вредоносность фузариозных корневых гнилей снижается за счет систематического известкования почвы. Индуцированная супрессивность возникает тогда, когда в почве создаются оптимальные условия для микробов-антагонистов. Установлено, что даже в окультуренных почвах наблюдается сокращение численности или исчезновение природных стабилизаторов экосистемы - базидиомицетов и BAM-грибов.

Устойчивость к фитопатогенным грибам в агроценозе определяется типом почвы, уровнем плодородия, дозой и формой минеральных удобрений, предшественником в севообороте, биологической активностью почвы, гидротермическими условиями сезона. Питание растения-хозяина, рассчитанное на оптимальный урожай, повышает его устойчивость к поражению патогенами.
Библиография:
8. The feasibility of small grains as an adoptive strategy to climate change / Authorsvodziwa М. // Russian Journal of Agricultural and Socio-Economic Sciences. 2015. Т. 41. № 5. С. 40-55.
СОВЕРШЕНСТВОВАНИЕ БИОЛОГИЗИРОВАННЫХ ТЕХНОЛОГИЙ В СОВРЕМЕННЫХ УСЛОВИЯХ
IMPROVING ECOLOGIZED TECHNOLOGIES IN MODERN CONDITIONS

Сычева И.И.
ФГБНУ ВНИИФ, Московская область, Россия
gladskih.ira@yandex.ru

Зоров А.А.
ФГБНУ Оренбургский научно-исследовательский институт сельского хозяйства, Оренбургская область, Россия

Ключевые слова: защита растений, биологизация, технологии, севооборот.

Большой интерес к альтернативному ведению сельского хозяйства был обусловлен тем, что значительно возрос спрос на биологически чистые продукты питания в связи с очень высоким уровнем применения минеральных удобрений, химических средств защиты растений от вредителей, болезней и сорняков. В настоящее время развивается несколько направлений биологизации земледелия.

Органическая система. В настоящее время эту систему наиболее широко применяют в США (штаты Орегон, Мэн и Калифорния). При органической системе продовольственные культуры выращивают, хранят и перерабатывают без применения синтетических удобрений, пестицидов и регуляторов роста.

Биологическая система. Применяется система главным образом во Франции. Часто ее называют по имени автора «система Лемер-Буше». При биологическом земледелии возможно применение химических удобрений.

Органо-биологическая система. Под этим названием в Швеции, Швейцарии и других странах существует течение, основное на теориях Х. Руша и Х. Мюллера. В основе системы лежит стремление к созданию живой и здоровой почвы за счет поддержания активизации деятельности микрофлоры.

Несмотря на то, что в России масштабы применения минеральных удобрений и химических средств защиты растений еще не достигли уровня западноевропейских стран и США, а в последние годы ввиду высоких цен на них даже снижаются, отрицательное последствие одностороннего и несбалансированного использования средств химизации не ослабевает. Кроме того, перспективы дальнейшего применения химических средств и природных материалов для поддержания и воспроизводства плодородия почвы и создания условий для формирования продуктивности возделываемых культур ограничиваются исчерпаемостью ресурсов для их производства. Существующие в настоящее время в мире направления исследований показывают, что решение указанных проблем возможно на основе всесторонней биологизации производства.

Устойчивый рост продуктивности растениеводства, его ресурсо- и энергоэкономичность на современном этапе развития в первую очередь обусловлен успехами селекции. Особую роль новые сорта и гибриды должны играть в улучшении охраны природы, поскольку в настоящее время зависимость агроэкосистем от применения удобрений, пестицидов, мелиорантов и других техногенных средств очень велика. Переход на рыночные отношения в зерновом
хозяйстве России, сопровождается существенными негативными явлениями, которые повлекли за собой сокращение посевых площадей зерновых культур, снижение их урожайности и валовых сборов. Преодоление этих явлений, возможно за счет использования интенсивных факторов совершенствования технологий возделывания, внедрения достижений науки и передового опыта, эффективного применения минеральных и органических удобрений, повышения плодородия почвы, внедрение севооборотов, а также интенсивных сортов и сохранения внешней среды.

Для повышения стабильности агроэкосистем необходимо вводить в зерновые севообороты нетрадиционные виды культурных растений. Высоким биологическим и экономическим потенциалом обладают люпин узколистный и кукуруза при выращивании на зерно. Люпин узколистный имеет широкий диапазон толерантности к биологическим, почво-климатическим и технологическим факторам. Кукуруза практически не поражается вредителями и болезнями. В связи с созданием скороспелых гибридов кукурузы необходимо расширять производство зерна этой культуры.

С учетом биологических особенностей этих культур и целесообразности резкого сокращения использования средств химизации при их возделывании программой исследований были разработаны следующие исследования: оценить эффективность технологии с различным уровнем биологизации возделывания сельскохозяйственных культур в зернопропашном севообороте короткой ротации лесостепной зоны центрального региона России.

В условиях лесостепной зоны проведена сравнительная оценка эффективности разных уровней биологизации технологии возделывания различных культур плодосменного зернопропашного севооборота с короткой ротацией. Получены новые экспериментальные данные по влиянию технологии возделывания на продукционный процесс растений, урожайность, кормовую и энергетическую ценность посевов люпина узколистного на семена, озимой пшеницы, кукурузы на зерно и ячменя. Применение новейших достижений селекции позволило обосновать возможность возделывания в условиях зоны кукурузы на зерно и использование люпина узколистного на зерно в качестве предшественника озимой пшеницы. Предложены энерго- и ресурсосберегающие технологии получения высококачественного зерна в зернопропашном севообороте с максимальным насыщением культурами для производства зернофуража.

Оценка направлений и степени биологизации растениеводства не должна ограничиваться установлением их эффективности в возделывании одной культуры. Более полной и информативной она становится при выявлении их влияния на продуктивность севооборота.

Библиография:

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИСПОЛЬЗОВАНИЯ ПОТОКОВЫХ СТРУКТУР В ПРЕЦИЗИОННОМ ЗЕМЛЕДЕЛИИ
THEORETICAL BASICS OF USING STREAM STRUCTURES IN PRECISION AGRICULTURE

Лопачев Н.А.
ФГБОУ ВО «Орловский государственный аграрный университет»
lopachev.nikolai@yandex.ru

Ключевые слова: потоковые структуры, земледелие, почвенный покров.

Растущему населению нашей планеты уже через 30 лет потребуется продуктов питания на 70% больше, чем их производится на данный момент времени. Самые оптимистические прогнозы развития биотехнологий показывают, что в обозримом будущем основную массу продуктов питания для населения нашей планеты будет обеспечивать пашня - земля - главное орудие и средство их производства.

Однако каждый год на нашей планете безвозвратно исчезает более 1 млн. га богарных и 300 тыс. га орошаемых пахотных земель (в РФ площадь пашни сокращается около 400 тыс. га/год) на фоне постоянного снижения их плодородия становится понятным, почему с 80 годов прошлого столетия главной парадигмой земледелия развитых мировых держав становится создание прецизионных систем земледелия. Их потенциал, преимущества над существующими системами земледелия, методология и проблемы построения точных систем земледелия изложены во многих публикациях [1,2,3,4], поэтому на них мы останавливаться не будем.

Цель нашего сообщения – показать возможности потоковой структуры почвенного покрова, как важнейшего достижения в области почвоведения за весь постдокучаевский период времени [5], не только в области построения точных систем земледелия, но и в других направлениях хозяйственной деятельности. Потоковая методология структуры почвенного покрова не противоречит ни одному существующему закону почвоведения и земледелия, она является научным завершением учения В.В. Докучаева о значении рельефа в эволюции почвенного покрова и картографическое отображение которого было создано Пущинской почвенной школой во главе с выдающимся почвоведом-географом И.Н. Степановым [6.7.8 и др.].

Теоретическая основа использования почвенного покрова для построения точных систем земледелия так же впервые сформулирована В.В. Докучаевым - когда почвоведение станет математически точной наукой, тогда земледелие достигнет невиданных высот. Сложность математизации структуры почвенного покрова связана с рельефом, который в виде горизонталей (двухмерного пространства) отображается на современных топографических картах, которые являются основой для создания масштабных проектов (дренажная и оросительная сети, каналы и т.д.), географических, тематических, в том числе, и традиционных почвенных карт.

Однако, до настоящего времени на всех традиционных почвенных картах не отображается рельеф, как важнейший почвообразующий фактор, реализующий закономерности размещения почв по его элементам В.В. Докучаева (водоразделы - плакоры, склоны - перемытые, смытые, намытые и понижения - наносы). К тому же в самих определениях - смытые, перемытые, намытые, наносы В.В.
Докучаев заложил понятие динамизма почвенного покрова, а так же отметил место начала их движения – плакоры.

Реализуя выше указанное положение В.В. Докучаева, преобразованием горизонталей топографических карт с помощью морфоизограф в четырёхмерное изображение рельефа (динамические потоки), мы с абсолютной точностью можем реализовать основной закон - приуровненность почв к элементам рельефа [5, 6,7,8,9]. К тому же Пущинской школой почвоведов было доказано, что потоковая структура характерна не только для микро- и мезорельефа, но и макро- и мегарельефа, и строгой приуровненности к их элементам почвенного покрова с определением направления движения – динамики.

Составленные мелкомасштабные геологические потоковые карты М 1:2500000 и М 1:1000000, для центра Европейской части России по материалам традиционной карты Т.Н. Спицарского (1965) показывают, что основные черты современного мега- и макрорельефа были заложены фундаментом архея и протерозоя. Потоковая структура данного уровня организации рельефа раскрывает весь процесс осадконакопления и формирования земной и полезных ископаемых. Один из примеров - железистые кварциты Курской серии мощностью 2000–2500 м. Потоковая гидрохимическая карта Европейской части РФ М 1:5 000000 (исходный материал – традиционная гидрохимическая карта СССР. Минеральные воды. Главные редакторы И.К. Зайцев, Н.И. Толстихин, 1964) показывает, что контуры минерализации обусловлены мегарельефом - бассейнами подземного стока.

Анализ структурных потоков почвенного покрова мелкомасштабной карты М 1:5000000 центра Европейской части РФ в сочетании с важнейшими факторами их формирования дает возможность провести системный анализ между зональностью почв В.В. Докучаева и выявленными отклонениями в ней [10,11]. При этом четко просматривается, что если на зоны В.В. Докучаева наложить макроструктуру каркаса рельефа и факторы ее определяющие, тогда выше указанные противоречия в географии почвенного покрова исчезают и становятся легко объяснимыми. Это позволяет по-новому провести научно обоснованную агропроизводственную группировку почв на макроструктурном уровне.

Среднемасштабная М 1: 100000 потоковая ландшафтная карта Подмосковья, составленная на основе традиционной (генерализованный вариант - Любушкина, 2005) дает такое же подробное описание элементов природы, но в динамике – на фоне движущегося потока. Это позволяет отобразить взаимодействие всех элементов природы и их взаимопревращение, обусловленное движением потока.

Использование потоковых карт рельефа меняет логистику составления мелиоративных проектов. Потоковые карты дают новые представления в области географии, этнографии, и других областях жизни социума. Прецизионные системы земледелия можно проектировать и реализовывать на основе детальных, точных потоковых картах масштаба 1: 2000 и крупнее.

Несмотря на огромный и длительный антропогенный прессинг, почвы на опытном поле сохраняют строгую приуруненность рассматриваемых нами признаков к элементам микро- и макрорельефа. Наиболее полно эти закономерности рассмотрены и установлены в виде математических закономерностей [10,11].

Математически точная структура почвенного покрова позволяет определить функциональную связь с продуктивностью агрофитоценозов в каждой точке поля. При этом не составляют трудностей в техническом плане для их элиминирования этих связей в пространстве и времени.
На данный момент теоретическое обоснование построения точных систем земледелия имеет экспериментальное обоснование и может быть реализовано на практике лишь после производственных испытаний.

Следовательно, потоковая методология структуры почвенного покрова является основой построения точных систем земледелия и дает новые представления о почве, как планетарном явлении [13], которому можно дать следующее определение: почва – планетарная динамическая эмерджентная система, сформировавшаяся в результате энергообмена между косной и биосистемами с тем, что около, формированной гумусом.

Библиография:
4. Лопачев Н.А. Системы точного земледелия, понятия и инновации // Земледелие. №5, июль, 2015. – С 8-12
6. Степанов, И.Н. Методика составления серии тематических среднемасштабных карт «Природно-мелиоративная и сельскохозяйственная оценка Срединного
5. Добровольский, Г.В. Развитие учения о структуре почвенного покрова как раздел географии почв / Г.В. Добровольский // Почвоведение.–1993.–№7.–С.3-10.
ЭКОЛОГИЧЕСКАЯ ОЦЕНКА ВЛИЯНИЯ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА УРБАНОЗЕМОВ, ДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВЫ ПАРКОВОЙ ЗОНЫ (Г. МОСКВА) И СЕРОЙ ЛЕСНОЙ ПОЧВЫ (ШЛАКОВЫЙ ОТВАЛ П. ДУМЧИНО)

ENVIRONMENTAL ASSESSMENT OF THE IMPACT OF ANTHROPOGENIC IMPACTS ON PHYSICO-CHEMICAL PROPERTIES URBANOZEM, SOD-PODZOLIC SOIL PARKLAND (MOSCOW) AND GRAY FOREST SOILS (SLAG HEAP N. DUMCHINO)

Степанова Л.П., Яковлева Е.В., Писарева А.В.
ФГБОУ ВО Орловский ГАУ, Орел, Россия
elenavalerevna79@ya.ru

Ключевые слова: урбаноземы, отвалы, оценка состояния.

Почвы города принято разделять на группы: естественные ненарушенные, естественно-антропогенные поверхностно преобразованные, антропогенные глубокопреобразованные урбаноземы и почвы техногенных поверхностных почвоподобных образований – урбаноземы.

В экологической устойчивости урбопочв и урбаноземов важную роль играют физико-химические свойства поверхностных горизонтов указанных почв. Результаты исследования физико-химических свойств урбопочв на разной удалённости от автомагистрали Каширское шоссе г. Москва и дерново-подзолистой почвы лесопарковой зоны Лосинный остров г. Москва, представленные в таблице, убедительно доказывают изменения, происходящие в антропогенно поверхностно преобразованных почвах (урбопочвах). Почвенные пробы, отобранные в трех опытных точках на разном удалении от автомагистрали, резко отличаются от свойств почвенных образцов, отобранных в парковой зоне. Для урбопочв характерными являются нейтральная реакция среды, рНKCl колеблется 6,37-7,10.

Величина гидролитической кислотности низкая и изменяется в пределах 0,35-1,28 мг/экв. на 100г почвы. Насыщенность основаниями почвенно-поглощающего комплекса высокая 91,2-96,5%. С экологической точки зрения величина емкости катионного обмена низкая, изменяется в пределах 9,4-14,61 мг/экв. на 100г почвы и характеризует низкую устойчивость почвы к антропогенным воздействиям. Гумусовое состояние урбопочв оценивается как повышенное - гумусированные с колебаниями в содержании гумуса в пределах 2,84-3,39%. Органическое вещество почвы оказывает разностороннее влияние на физические, физико-химические свойства, питательный режим, биологическую активность почвы, поглотительную способность и буферность почвы.

Обеспеченность подвижным фосфором и обменным калием оценивается как средняя, повышенная и высокая, что свидетельствует о высоких дозах применения как органических, так и минеральных удобрений в урбаноземах, используемых в качестве газонов и цветников вдоль автомагистрали Каширское шоссе.
Физико-химические свойства дерново-подзолистой почвы парковой зоны Лосинный остров (г. Москва) значительно отличаются от состава и свойств исследуемых урбанизов (таблица 1). Гумусовый, верхний горизонт на глубине 0-20 см имеет низкое содержание гумуса 1,27%, что характеризует оценку органического вещества почвы как «малогумусированная». При этом содержание гумуса в урбанизалах было в 2,24-2,67 раза выше количества гумуса в фоновой почве. Состояние почвенно-поглощающего комплекса дерново-подзолистой почвы отличается от состава поглощенных катионов в ППК урбопочв. Как видно из данных таблицы величина емкости катионного обмена составила 11,9 мг/экв.

Высокая кислотность, очень высокая ненасыщенность основаниями (26,3%) и низкая гумусированность подавляют активность физиологических групп микроорганизмов, и соответственно снижается общая численность микроорганизмов и соотношение эколого-трофических групп. Обеспеченность подвижными формами фосфора низкая, обменным калием средняя.

Таблица 1 - Агрохимическая характеристика городской почвы, слой 0-20 см

<table>
<thead>
<tr>
<th>Удаленность</th>
<th>pHKCl</th>
<th>Hr (Ca+Mg)</th>
<th>S (мг.-экв./100 г)</th>
<th>ЕКО</th>
<th>P2O5</th>
<th>K2O</th>
<th>Сорг. %</th>
<th>Гумус. %</th>
<th>V, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Каширское шоссе, г. Москва</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 м</td>
<td>6,90</td>
<td>0,35</td>
<td>9,69</td>
<td>10,04</td>
<td>29,78</td>
<td>16,5</td>
<td>1,95</td>
<td>2,84</td>
<td>96,5</td>
</tr>
<tr>
<td>50 м</td>
<td>6,37</td>
<td>1,28</td>
<td>13,33</td>
<td>14,61</td>
<td>18,05</td>
<td>26,52</td>
<td>1,16</td>
<td>3,37</td>
<td>91,2</td>
</tr>
<tr>
<td>300 м.</td>
<td>7,10</td>
<td>0,43</td>
<td>8,97</td>
<td>9,40</td>
<td>36,1</td>
<td>19,85</td>
<td>2,03</td>
<td>3,39</td>
<td>95,4</td>
</tr>
<tr>
<td>Лосинный остров, г. Москва</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль (фоновая почва)</td>
<td>4,75</td>
<td>8,83</td>
<td>3,15</td>
<td>11,98</td>
<td>4,14</td>
<td>9,89</td>
<td>0,74</td>
<td>1,27</td>
<td>26,3</td>
</tr>
<tr>
<td>Шлаковый отвал п. Думчино Мценского района, Орловской области</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 м 0-10 см</td>
<td>4,5</td>
<td>3,6</td>
<td>3,0</td>
<td>6,6</td>
<td>4,5</td>
<td>42,5</td>
<td>1,62</td>
<td>2,8</td>
<td>45,5</td>
</tr>
<tr>
<td>10-20 см</td>
<td>4,3</td>
<td>3,2</td>
<td>4,0</td>
<td>7,2</td>
<td>5,3</td>
<td>21,3</td>
<td>1,39</td>
<td>2,4</td>
<td>55,5</td>
</tr>
<tr>
<td>20-30 см</td>
<td>4,3</td>
<td>3,3</td>
<td>4,0</td>
<td>7,3</td>
<td>7,3</td>
<td>12,9</td>
<td>1,17</td>
<td>2,01</td>
<td>54,8</td>
</tr>
<tr>
<td>300 м 0-10 см</td>
<td>5,4</td>
<td>1,14</td>
<td>9,0</td>
<td>10,14</td>
<td>22,5</td>
<td>20,0</td>
<td>1,04</td>
<td>1,8</td>
<td>92,0</td>
</tr>
<tr>
<td>10-20 см</td>
<td>5,9</td>
<td>1,05</td>
<td>14,8</td>
<td>15,85</td>
<td>14,3</td>
<td>35,6</td>
<td>1,04</td>
<td>1,8</td>
<td>93,4</td>
</tr>
<tr>
<td>20-30 см</td>
<td>5,6</td>
<td>1,2</td>
<td>12,0</td>
<td>13,2</td>
<td>19,0</td>
<td>9,6</td>
<td>0,75</td>
<td>1,3</td>
<td>90,9</td>
</tr>
</tbody>
</table>

Особенности гумусонакопления и физико-химические свойства серых лесных почв во многом определяются степенью воздействия солевых алюминиевых отсевов, накапливаемых в шлаковом отвале. В непосредственной близости к отвалу почвенный покров на глубину гумусового слоя был полностью снят при обустройстве площадки для складирования отсевов, однако при небольшой величине емкости поглощения и степени насыщенности основаниями высокая обеспеченность подвижным калием создает благоприятные условия для роста и развития растительного покрова и накопления гумуса (67,2т/га) в 20 см слое почвы. При большем удалении от источника загрязнения увеличивается количество подвижных форм элементов питания и биологическая
продуктивность растений, что подтверждается созданием запасов гумуса в гумусовом слое почвы 70,2 т/га на расстоянии 300 м от источника загрязнения. Это позволяет предположить влияние органического вещества и растений на аккумуляцию металлов в профиле почвы, а также влияние солевых отсевов на свойства и пищевой режим почв.

Серые лесные почвы, расположенные вблизи шлакового отвала, характеризуются срединно и сильнокислой средой по всему профилю (pH 4,3 – 4,5). Содержание подвижных форм фосфора очень низкое 4,5 мг, обменного калия высокое – 12,9-42,5 мг на 100 г почвы, гумусированность почвы на глубине 0 – 30 см составляла 2,01– 2,8%. При большей удалённости от источника загрязнения отмечается изменение реакции почвенной среды до слабокислой и близкой к нейтральной - pH 5,4 – 6,0, при этом увеличивается сумма обменных оснований с 8,0 до 24,0 мг-экв/100 г почвы. Снижается величина гидролитической кислотности, степень насыщенности основаниями возрастает от 81,6 до 94,8%. На расстоянии 300 м от отвала в серых лесных почвах наблюдается увеличение подвижных форм фосфора до 22,5 мг, количество обменного калия остается таким же высоким 20,0 – 50,0 мг на 100 г почвы.

Таким образом, можно сделать вывод о том, что под действием антропогенных преобразований происходят значительные изменения в составе и свойствах создаваемых урбаниземов, что предопределяет необходимость детального изучения этой группы почв, выполняющих важные экологические функции в окружающей среде города. Влияние шлакового отвала на изменение физико-химических свойств серых лесных почв также показало, что шлаки являются основным источником загрязнения и изменения физико-химических свойств, подтверждающих развитие элювиально-глеевого процесса и закономерное перераспределение обменных оснований, гумуса, фосфора и калия по профилю почвы.

Библиография:

1. Коренькова Е.А., Степанова Л.П., Яковлева Е.В., Черный Е.С., Экологическая оценка влияния техногенеза на состояние поверхностных и подземных вод Ученые записки ОГУ. -№3 (59).- 2014. - С.180-183
2. Степанова Л.П., Яковлева Е.В. Писарева А.В. Физико-химическая оценка восстановления плодородия нарушенных серых лесных почв при их рекультивации Безопасность в техносфере, 2015, № 2 (53)/2015, с 27-33
3. Степанова Л.П., Яковлева Е.В., Коренькова Е.А., Писарева А.В. Агроэкономическая оценка восстановления плодородия антропогенно нарушенных и рекультивируемых серых лесных почв. Ученые записки Орловского государственного университета, №4, 2015, стр. 256-261
4. Яковлева Е.В., Степанова Л.П., Коренькова Е.А., Писарева А.В. Состояние плодородия антропогенно - измененных с-л почв и его эколого-экономическая оценка Вестник РУДН серия экология и безопасность жизнедеятельности, 2015 - №3, стр.105-115
МОНИТОРИНГ ЗАСОРЕННОСТИ ПОСЕВОВ В ГОРНОЙ ЗОНЕ
СЕВЕРНОЙ ОСЕТИИ
MONITORING OF CONTAMINATION OF CROPS IN THE MOUNTAINOUS
AREA IN NORTH OSETIA

Адиньева Э.Д., Кожаев В. А.
ФГБОУ ВО Горский государственный аграрный университет, Владикавказ, Россия
ggau@globalalania.ru

Ключевые слова: горная зона, засоренность, виды сорняков, пропашные культуры, озимые зерновые культуры, многолетние травы, гербициды, урожайность.

Россия по площади посева сельскохозяйственных культур занимает одно из первых мест в мире, однако по урожайности далеко отстает от многих других стран, так как огромные площади сельскохозяйственных угодий засорены [1]. Поэтому систематические наблюдения за сорными растениями, уничтожение их и продуктивная борьба с ними являются актуальной задачей науки и производства.

Вертикальная зональность играет решающую роль в формировании почвенного и растительного покрова, обуславливая засоренность посевов характерными для конкретной зоны видами сорняков. Район проведения исследований в горной зоне (стационар СК НИИ ГиПСХ, с. Даргавс) характеризуется умеренно-континентальным, относительно мягким климатом. Среднегодовая температура воздуха 5,4-6,3°С, количество осадков - 540 мм. Почвы - горно-луговые субальпийские выщелоченные, рН почвы - 4,5 (кислая).

Из данных исследования видового состава сорных растений следует, что преобладают в горной зоне многолетние двудольные сорняки. Многие из сорных растений влаголюбивы, способны произрастать на кислых почвах [3].

Для полного представления о степени засоренности семенами сорных растений пахотного слоя почвы каждого поля, число их, установленное при анализе образцов, пересчитывают на единицу площади (1 м² и 1 га) – Б.А. Доспехов, метода малых проб. Для этого сначала определяют площадь режущей части бура. В нашем случае она была равна 50,3 см², тогда переводной коэффициент (К) для 1 га будет равен: К = 10000/0,00503 = 1988071.

Среднее число семян сорняков каждого вида в пробе, умноженное на переводной коэффициент, даёт величину, равную числу их на 1 га.

При анализе почвенных проб были обнаружены семена следующих сорных растений: ярутка полевая (Thlaspi arvense), цициа запрокинутая (Amaranthus retroflexus), польнь обыкновенная (Artemisia vulgaris), ликульник обыкновенный (Galeopsis ruderalis), чертополох колючий (Carduus acanthoides), горец птичий (Polygonum aviculare). Потенциальную засоренность посевов в горной зоне по бонитирочной шкале можно охарактеризовать как среднюю и сильную.

Следовательно, показатель фактической засоренности находился в пределах среднего значения. Однако для достижения наилучших результатов в борьбе с сорными растениями было решено применять химические меры борьбы, то есть использовать гербициды избирательного действия.

Посевы были обработаны следующими гербицидами: картофель – Премьер 300 (200г/га) + Центурион (300г/га), озимая рожь – Премьер 300 (200г/га),

"Международная научно-практическая конференция "Антропогенное развитие современных почв и продовольственного производства в условиях изменения почвенно-климатических условий", октябрь 29 - ноябрь 28, 2015,
DOI http://dx.doi.org/10.18551/rjoas.2015.e-conf"
克莱вер – Премьер 300 (200г/га) + Центурион (300г/га). Наилучший результат гибели сорных растений был достигнут при двукратной обработке гербицидами на посевах озимой ржи (100% гибели сорных растений), несколько хуже – на клевере и картофеле (93%).

Наибольшее количество азота выносит из почвы щирица запрокинутая, фосфора и калия – репейник большой. Эти сорняки являются самыми распространенными в горной зоне и самыми вредоносными. В среднем сорняки выносят с 1 га 110 кг азота, 25 кг калия и 48 кг фосфора. Следовательно, наиболее отзывчивы на борьбу с сорняками картофель и рожь (прибавка 62,7% и 48,3% соответственно), клевер (15,6%) [4].

Одним из этапов нашего исследования было проведение анализа готовой продукции методом газо-жидкостной хроматографии с целью обнаружения опасных количеств действующих веществ гербицидов [5]. Действующие вещества применяемых гербицидов (Премьер 300 – клоприлад, Центурион – клетодим) в продукции обнаружены не были.

Следовательно, применение гербицидов снижало засоренность посевов и вынос сорняками элементов питания из почвы, повышая накопление питательных веществ и урожайность возделываемых культур, не представляя при этом угрозу для здоровья и жизни человека.

Выводы:
1. Видовое разнообразие сорняков в каждой природной зоне обусловлено природно-климатическими условиями. Применение гербицидов сокращало их численность в два и более раза. Потенциальная и фактическая засоренность в данной зоне превышали средние значения.
2. Наилучший результат гибели сорных растений был достигнут при двукратной обработке гербицидами на посевах озимой ржи (100% гибели сорных растений), несколько хуже – на клевере и картофеле (93%).
3. Установлено, что в посевах (без применения гербицидов) в горной зоне сорняки выносят с 1 га в среднем 110 кг азота, 25 кг калия и 48 кг фосфора.
5. Химические обработки благоприятно воздействовали на продуктивность, независимо от зональных особенностей. Наиболее отзывчивы на борьбу с сорняками картофель и рожь (прибавка 62,7% и 48,3% соответственно), клевер (15,6%).
6. Применение гербицидов снижало засоренность посевов и вынос сорняками элементов питания из почвы, повышая накопление питательных веществ и урожайность возделываемых культур, не представляя при этом угрозу для здоровья и жизни человека.
Библиография:
1. Адинаев Э. Д., Кожаев В. А., С учётом зональных особенностей // Защита и карантин растений. № 3. Москва, 2015. – С. 30-32
2. Адинаев Э. Д., Кожаев В. А. Экологические аспекты борьбы с сорными растениями в различных агроландшафтах РСО-Алания / Адинаев Э. Д., Кожаев В. А. // Известия Горского ГАУ. №51, ч.3. Владикавказ 2014. – С.17-23.
3. Кожаев В. А. Влияние гербицидов на засоренность посевов и потребление питательных элементов сорняками в различных агроландшафтах РСО-Алания. // Известия Горского ГАУ. № 51, ч.1. Владикавказ, 2014. – С. 26-32
4. Кожаев В. А. Влияние гербицидов на засоренность посевов и урожайность озимой ржи в горной зоне РСО-Алания / Елоева З. В., Кожаев В. А. // Научные труды студентов ГГАУ, выпуск 51, Владикавказ, 2014 – С. 30-31
5. Кожаев В. А. Особенности засоренности посевов и продуктивность пропашных, озимых зерновых культур и многолетних трав в различных природных зонах РСО-Алания / Адинаев Э. Д., Кожаев В. А. // Известия Горского ГАУ. № 50, ч.4. Владикавказ, 2013. – С. 17-21
ОСОБЕННОСТИ РАЗВИТИЯ ГРИБНЫХ И БАКТЕРИАЛЬНЫХ БОЛЕЗНЕЙ НА ПЕРСПЕКТИВНЫХ СОРТАХ СОИ В УСЛОВИЯХ ЛЕСОСТЕПНОЙ ЗОНЫ И УСОВЕРШЕНСТВОВАНИЕ ПРИЕМОВ ЗАЩИТЫ ОТ КОМПЛЕКСА ВОЗБУДИТЕЛЕЙ

PECULIARITIES OF DEVELOPMENT FUNGAL AND BACTERIAL DISEASES ON PROMISING SOYBEAN VARIETIES IN THE FOREST-STEPPE ZONE AND IMPROVEMENT OF METHODS OF PROTECTION FROM THE COMPLEX OF PATHOGENS

Сычева И.И.
ФГБНУ ВНИИФ, Московская область, Россия
gladskiih_ir@yandex.ru

Зоров А.А.
ФГБНУ Оренбургский научно-исследовательский институт сельского хозяйства, Оренбургская область, Россия

Зеленов А.А.
ВНИИЗБК, Орловская область, Россия
zelenov-a-a@ya.ru

Ключевые слова: соя, сорта, устойчивость к заболеваниям, биологические методы, урожайность.

В связи со значительным ростом народонаселения мира и увеличением потребности в белке, в мировом земледелии наметилась устойчивая тенденция к наращиванию производства белковых источников питания.

Проблема увеличения производства белка, должна решаться двумя взаимодополняющими путями. Первый - восстановление конкурентоспособного мясомолочного комплекса, второй - развитие системы производства и использования растительных белковых продуктов на пищевые цели. Среди дополнительных источников пищевых белков все большее внимание уделяется продуктам переработки соевых бобов, что вызвано высокими биологическими качествами соевого белка.

Сегодня соя - одна из важнейших продовольственных культур в мире. Большой практический интерес к сое вызван тем, что в ее семенах содержится до 50% белка и 20-23% растительного масла. Она не имеет себе равных культур по разнообразию содержащихся в ней полезных веществ. Не менее важно и то, что это полноценный белок, содержащий все необходимые человеку аминокислоты, и максимально сходный по составу с белком мяса.

Наличие этих ценных компонентов, делает сою одной из самых перспективных культур в решении проблемы дефицита белка в питании людей, кормопроизводстве и обеспечении сырьем отраслей промышленности.

Наряду с проблемой белка в мире существует проблема производства растительного масла. В общемировом производстве растительных масел соевому принадлежит первое место (около 30%), а подсолнечному, основному в России, только четвертое (10-15%).

Если производство растительного масла можно увеличить достаточно быстро за счет расширения посевых площадей масличных культур и повышения
их урожайности, то производство высокобелковых продуктов питания остается проблемой на более длительный период.

В решении этих задач, большое значение имеет максимальное расширение посевов сои, которая наряду с другими культурами призвана решить проблему дефицита белка и растительного масла в нашей стране.

Практическую ценность приобретают вопросы, связанные с разработкой технологии возделывания сои, обеспечивающей экономию водных и энергоресурсов, удобрений, средств защиты растений, повышение плодородия почвы, улучшение качества сельскохозяйственной продукции, сохранение и улучшение экологической обстановки в регионе, а так же вопросы переработки и использования сои.

Влияние болезней на формирование урожая сои зависит от условий внешней среды, наличия переносчиков заболеваний и в большой степени от сорта.

Сочетание в сортах сои комплексной устойчивости или толерантности к основным заболеваниям с высокими показателями продуктивности и качества является одной из главных задач селекционеров.

В настоящее время сельскохозяйственное производство в достаточной мере обеспечено разнообразными сортами сои, хорошо адаптированными к условиям зоны выращивания. В то же время идеальный во всех отношениях сорт ещё не создан. Наряду с продуктивностью и качеством урожая, особую актуальность сейчас приобретает повышенная конкурентоспособность растений сои по отношению к сорной растительности, увеличение устойчивости сортов к основным заболеваниям.

В комплексе мероприятий по защите сельскохозяйственных культур от болезней до последнего времени предпочтение отдавалось высокоэффективному химическому методу. Однако наряду с положительными сторонами, применение пестицидов приводит к возникновению ряда экологических проблем. Полностью отказаться от использования химических средств защиты растений, к сожалению, пока нельзя. Поэтому только комплексный подход, применение научно-обоснованных приёмов и междисциплинарных знаний в земледелии и защите растений позволит найти выход из сложившейся ситуации.

С целью получения чистых продуктов питания и фуража и наименьшего при этом загрязнения окружающей среды, мы в своих исследованиях уделили основное внимание вопросам использования наиболее устойчивых к заболеваниям сортов сои и применению биологического метода защиты растений от болезней.

Основной задачей сельскохозяйственного производства является повышение урожайности полевых культур, дальнейший рост производства зерна на основе научно-обоснованных систем земледелия и совершенствования защитных мероприятий от вредных организмов.

В настоящее время такие заболевания сои, как пероноспорез, фузариоз, аскохитоз, пустульный бактериоз, угловатая пятнистость являются широко распространенными и вредоносными. Потери урожая от них могут достигать 20-30%. Борьба с этими заболеваниями требует обязательного применения защитных мероприятий в период вегетации. Однако химические препараты экологически небезопасны и являются дорогостоящими средствами защиты растений. Поэтому необходим и актуален переход к сочетанию возделывания устойчивых сортов и использованию в период вегетации биопрепаратов, что позволит снизить пестицидный пресс на агробиоценоз сои и уменьшит стоимость
обработок растений. Необходимость оперативного решения этих вопросов определило актуальность темы.

Целью наших исследований являлось изучение особенностей развития, распространения и вредоносности возбудителей грибных и бактериальных болезней на перспективных сортах сои в условиях лесостепной зоны неустойчивого увлажнения и усовершенствование приемов защиты сои от комплекса возбудителей заболеваний. В соответствии с поставленной целью предусматривалось провести фитосанитарный мониторинг распространения и вредоносности возбудителей болезней сои и изучить влияние метеорологических факторов на развитие болезней в течение вегетации, изучить устойчивость различных сортов сои к комплексу заболеваний, провести сравнительный анализ эффективности применения химических и биологических препаратов против грибных и бактериальных болезней с целью включения наиболее эффективных в зональную технологию возделывания сои. Уточнен видовой состав возбудителей грибных и бактериальных болезней в зоне исследований. В частности выявлены виды грибов родов: Ascochyta, Alternaria, Aspergillus, Fusarium, Penicillium, Peronospora, Sclerotinia, Septoria; бактерии родов Xanthomonas, Pseudomonas, Erwinia.

Отмечена зависимость показателей распространения и степени поражения растений сои фузариозом всходов, ложной мучнистой росой (пероноспорозом), аскохитозом, бактериозами от погодно-климатических факторов (количество осадков, относительной влажности и температуры воздуха).

Проведена оценка устойчивости ряда современных сортов сои к комплексу возбудителей основных заболеваний в условиях зоны неустойчивого увлажнения. Установлены существенные различия сортов по поражаемости основными болезнями и выявлены сорта, Селекта 302, Армавирская 4, Дуар обладающие групповой устойчивостью к этим заболеваниям. Оценена биологическая и экономическая эффективность применения биологических препаратов в период вегетации для защиты сои от болезней, определено их влияние на урожайность и качество урожая.

Изучаемые препараты независимо от условий вегетационного периода позволяют снизить степень развития пероноспороза и бактериозов. В вариантах с применением псевдобактерина-2, Ж, и бактофита, Ж, отмечено снижение степени развития болезни на 20,5-23,4%. Опрыскивание посевов псевдобактерином-2, Ж, снижает степень развития пероноспороза на 15 %.

Эффективность применения биологических препаратов в период вегетации без предварительного протравливания посевного материала против грибных и бактериальных заболеваний несколько ниже, чем на фоне протравливания. Применение препаратов псевдобактерин-2, бактофит снижает степень развития пероноспороза, а применение гамаира (20 г/га) снизило развитие бактериозов с 28,7% до 14,0%. Биологические препараты псевдобактерин-2, бактофит снижают заспоренность зерновок сои сорта р. Penicillium, Aspergillus на 5-6%, Fusarium на 3-4%, гамаир снизил заспоренность зерновок бактериями на 10-15%. Применение биологических препаратов для защиты посевов сои от болезней в период вегетации на фоне предпосевной обработки семян фундазолом (500 г/мг) экономически выгодно.

Библиография:
THE EFFECT OF BREAKFAST TYPE AND DAILY ENERGY INTAKE OF BREAKFAST ON BODY MASS INDEX AND WEIGHT IN ELEMENTARY STUDENTS IN TONEKABONE

Homeyra Nasiri Reineh
Tonekabon Branch, Islamic Azad university, Tonekabone, Iran

Key words: BMI, energy intake, elementary students.

Objective: The objective of this study was to investigate the relationship between breakfast type, energy intake of breakfast (EB) with body mass index (BMI) and weight.

Methods: A total of 300 students aged 7-11 years old were selected through multistage cluster sampling from 5 elementary school in Tonekabone city, the sample consisted 47.2% girls and 52.8% boys. 14.6% of students always skipped breakfast and 74.5% of samples reported eating breakfast every day. 10.9% of them ate breakfast sometimes. Data's were analyzed for breakfast type, EB, BMI, weight, % energy of breakfast macronutrients (%cho, %pr, %fat), breakfast skipping, under, normal, over obesity defined as 15th, 50th, 85th, 95th percentile of age-sex-specific BMI reference value respectively. Student T and chi square tests were employed to analyze the data. Statistical inferences were made at 0.05.

Results: Subjects who ate breakfast and their EB was about 357.21 ±181.9 and their % cho, %pr, %fat from EB was 51.7 ±22.3 %, 14.5±6, 22.26±5, and ate bread about 2 serving for breakfast had significantly lower BMI and weight compared to Skippers and overeaters (p ≤ 0.01).

Conclusions: We showed not only that breakfast consumption itself is associated with BMI and weight, but that the type of food eaten at breakfast also affects BMI and weight. This analysis provides evidence that skipping breakfast is not an effective way to manage weight. Eating cereal and breads for breakfast is associated with more low BMI and weight.
DETERMINATION OF LACTIC ACID BACTERIA ON BREAST MILK IN TONEKABON CITY, IRAN

Homeyra Nasiri Reineh
Tonekabon Branch, Islamic Azad university, Tonekabone, Iran

Key words: lactic acid bacteria, breast milk, probiotic.

Probiotics play an important role in human health. Their desire affections can include prevention of digestive system’s diseases, keeping and increasing of desirable micro flora, increasing of host prevention against pathogens, stimulating of immune system and so forth. On the other side, probiotics enjoy functional properties. This research aims at determination of probiotic lactic acid bacteria in mom’s milk.

Material and method: It was a descriptive study with a nation of 200 milking women with no problem in pregnancy using random sampling method. In order to milk sampling, outer art of breast cleansed by soap and water and the amount of 2-3cc collected in wide mouth pipe, the samples examined using MRC culture for rod probiotic bacteria and KAA culture media for spherical probiotic bacteria. Probiotic bacteria need to carbon dioxide and slightly oxygen. All the plates placed in anaerobic jar in incubator at 37 ºC for 48-73 hr. detection of grown bacteria performed base on their grown in special culture media, colony shape and appearance, gram painting, starch granule painting, catalase and oxidase test and so on.

Results: The ages of mothers ranged from 25.72/5 ± where 136 samples were gram positive cocci, 100 samples staphylococcus and 134 micrococcus, 12 yeast cells, 4 samples Acinetobacter. Molds’ grown may occur as a result of contamination of experiment tube, culturing plate or even Lab’s conditions.
DETERMINATION OF RELATIONSHIP BETWEEN FOOD HABITS AND SERUM LIPIDS LEVEL IN DIABETICS

Homeyra Nasiri Reineh
Tonekabon Branch, Islamic Azad university, Tonekabone, Iran

Key words: food habits, serum lipids, diabete.

Diabetes is one of the main cardiovascular disease and hyperlipidemia, Atherosclerosis and their side effects of it resulting in mortality. This study aims at determination of food habits and lipid serum level in diabetic's type 2.

Material and Method: That was an analytical-descriptive research. Statistical nation included 100 Diabetics from Shahid Rajaei hospital, Tonekabon, Iran asked to fill Food frequency questionnaire with no training or therapeutic intervention. Base on this questionnaire, 34 food materials categorized in 3 groups; more than 3 times a week, 1-3 times a week, less than once a week.

Each patient asked to have medical experiments including, FPG, Cholesterol, Glyceride, LDL, HDL using PAP-SL enzymatic method. Factor analysis and several variant regression methods used to analysis of data.

Results and discussion: Results revealed that consumption of milk, high fat yogurt, fat and cream, oil, rice, potato and meat with cholesterol level; consumption of potato, red meat, confectionaries, sugar with triglyceride level; consumption of vegetable and fish with HDL direct relationship & consumption of fruit and vegetable has an inversely relationship with cholesterol level.

Conclusion: Increase of fruit and vegetables Consumption, reduction of rice, potato, fat and refined sugar consumption along with substitution of red meat by fish showed an appropriate affection on hyperlipidemia in diabetics.
BIFIDOBACTERIUMANIMALIS STRAIN DN-173 010 OF FERMENTED MILK (FBM) ON H.PYLORI (HP) IN THE ELDERLY WITH FAMILY HISTORY OF GASTRIC CANCER (GC)

Homeyra Nasiri Reineh
Tonekabon Branch, Islamic Azad university, Tonekabone, Iran

Key words: probiotic, H.pylori, peptic ulcer, gastric cancer.

Probiotic is considered a functional food and has beneficial effects on human health. According to recent report by ministry of health in Iran GC is the most common fatal cancer in Iran and GL cancer is the first common cancer in Mazandaran province (in the north of Iran). HP is determined as a carcinogen by WHO. HP infection in Iran have high prevalence and it's associated with peptic ulcer and GC. The aim of the present study was investigate the effects of FBM on HP gastroenteritis and to determine the rate of the reduction HP in them.

Methods and materials: This randomized clinical trial was conducted on 120 males (60-70 years old) with symptoms of peptic ulcer and a strong family history of GC and documented HP infection (exclusion criteria antibiotic therapy within less than 1 month) that had refered to shahidrajai hospital in tonekabone. Subjects in the intervention group consumed 250 grams of FBM daily while these in the control group consumed 250 grams of conventional milk (CM) daily for 10 weeks. Paired samples t-test and analysis of covariance were performed by SPSS software for statistical analyses.

Result: A significant decrease in the urease levels was found in FBM treatment group then CM (p<./.5) after 10 weeks which indicates a reduction of the HP in the stomach.

Conclusion: Considering the positive effect of FBM in reducing HP in patients. consumption of probiotic is recommended as auxiliary therapy in these patients and thus alleviate the inflammation.
STUDY ON SUPPLEMENTARY AFFECTION OF BREWER’S YEAST PILLS AND PARSLEY SEEDS ON GAINING WEIGHT OF BODY

Homeyra Nasiri Reineh
Tonekabon Branch, Islamic Azad university, Tonekabone, Iran

Key words: supplementary affection, brewer’s yeast pills, parsley seeds.

Losing weight has different reasons may include digestive disorders, Anorexia, liver diseases and depression. The main goal of this study was determination of gaining weight related to consumption of Brewer’s yeast pills and Parsley seeds by skinny people.

Material and method: Statistical nation included a groups of women ranged 16-41 with BMI <18.5. People’s weight measured by lever balance and their waist circumstance by plastic meter. Control women (30 persons) asked to eat 3 Brewer’s yeast pills half hour before main meals with a glass of boiled parsley seed (4 table spoon in 1L water). T-test used to Examine people’s weight and waist during treatment.

Results: Average and standard deviation of samples’ weight and waist were 46.37±6.97, 49.15 ± 6.8 and 63.56±8.4, 65.5±7.3 before and after treatment respectively.

Conclusion: Consumption of Brewer’s yeast pills and parsley seed easily affected on gaining weight.
USING GUMS AS STABILIZERS IN BEVERAGES

Homeyra Nasiri Reineh
Tonekabon Branch, Islamic Azad university, Tonekabone, Iran

Key words: functional beverages, hydrocolloids, stabilization, texture.

A functional beverage commonly formulated by addition of functional ingredients or reduction of less considerable nutritionally ingredients like sugar or fat. Beverage formulation has direction affection on ingredient selection cause the need for reaching stabilization of beverage. To overcome these challenges, we request to add hydrocolloids, emulsifiers due to their being stabilizing properties through affections on viscosity and electrostatic reactions and keeping quality of products against microorganisms. This research aims at detecting all the circumstances when formulating functional beverages regarding creation of stabilization, mouth feel.
ВЛИЯНИЕ ЗАСОРЕННОСТИ НА ПРОДУКТИВНОСТЬ ОСНОВНЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР В ПРЕДГОРНОЙ ЗОНЕ СЕВЕРНОЙ ОСЕТИИ
INFLUENCE OF WEEDS ON THE PRODUCTIVITY OF MAJOR CROPS IN THE FOOTHILLS OF THE NORTH OSSETIA

Адиньяев Э.Д., Кожаев В. А.
ФГБОУ ВО Горский государственный аграрный университет, Владикавказ, Россия
ggau@globalalania.ru

Ключевые слова: предгорная зона, засоренность, виды сорняков, пропашные культуры, озимые зерновые культуры, многолетние травы, гербициды, урожайность.

Борьба с сорняками в современном земледелии – главная проблема в защите растений, без решения которой нет смысла в остальных мероприятиях, направленных на повышение плодородия и урожайности. Связано это в первую очередь с тем, что сорняки нуждаются в тех же факторах жизни, что и культурные растения. Поэтому они являются конкурентами культурных растений и резко снижают урожай [1].

На пахотных землях сорные растения способны заглушать сельскохозяйственные культуры, затеняя их, усиливая расход почвенной влаги. При сборе урожая они ухудшают качество продукции, их наличие отрицательно сказывается на хранении продукции, в том числе и зерна. Сорняки являются очагами размножения вредителей сельскохозяйственных культур, затрудняют работу сельскохозяйственных машин и орудий, снижают их производительность. Уничтожение сорных растений, продуктивная борьба с ними является актуальной задачей науки и производства.

Район проведения исследований в предгорной зоне (опытное поле СК НИИ ГиПСХ, с. Михайловское) характеризуется неустойчивым увлажнением. Сумма положительных температур за вегетацию колеблется в пределах 2800-3400ºС. Количество осадков за год – 650 мм с. ГТК - 1,2-1,5. Почвы - чернозёмы выщелоченные, подстилаемые галечником. Содержание гумуса 5,2 - 6,3%, pH = 6,0-6,5 (близко к нейтральной).

Посевы в предгорной зоне в основном были засорены ранними яровыми сорняками, а также в значительной степени злаками.

Для полного представления степени засоренности семенами сорных растений пахотного слоя почвы каждого поля, число их, установленное при анализе образцов, пересчитывают на единицу площади (1 м² или 1 га). Для этого сначала определяют площадь режущей части бура. В нашем случае она была равна 50,3 см², тогда переводной коэффициент (К) для 1 га будет равен:

\[K = \frac{10000}{0,00503} = 1988071 \]

В пахотном слое посевов встречались семена следующих видов сорных растений: щирица запрокинутая (Amaranthus retroflexus), марь многосемянная (Chenopodium polyspermum), росичка кроваво-красная (Digitaria sanguinalis),
амброзия полыннолистная (Ambrosia artemisifolia), щетинник сизый (Setaria glauca).

Таким образом, потенциальную засоренность посевов в горной зоне по бонитировочной шкале можно охарактеризовать как сильную.

Посевы культур в предгорной зоне обрабатывались следующими гербицидами: кукуруза - баковая смесь гербицидов Риманол (50 г/га) и Стартерр (400 г/га); озимая пшеница - Секатор-турбо (80 г/га) и Топик (300 г/га); люцерна - Премьер 300 (200 г/га) и Центурион (300 г/га).

Наилучший результат гибели сорных растений был достигнут при двукратной обработке гербицидами на посевах клевера (100% гибели сорных растений), несколько хуже - на озимой пшенице и кукурузе (97% и 94% соответственно).

Наибольшее количество азота, фосфора и калия выносит из почвы топинамбур, меньше - амброзия и мелколепестник однолетний. В среднем сорняки выносят с 1 га 24 кг азота, 10 кг калия и 10 кг фосфора. Следовательно, наиболее отгнивающая на борьбу с сорняками оказывалась кукуруза (прибавка 50%), в меньшей степени пшеница и клевер (прибавка 33% и 22% соответственно).

Вынос азота культурами при обработке гербицидами существенно возрастает в случае с кукурузой на 20 кг/га, озимая пшеница - 50 кг/га, клевер - 20 кг/га, фосфора - 20, 20, 10 кг/га, калия - 10, 40, 10 кг/га.

Проведенные лабораторные исследования по установлению в готовой продукции остаточных количеств гербицидов показали, что опасных количеств действующих веществ (Стартерр - действующее вещество дикамба; Риманол – римсульфuron; Секатор-турбо – амидосульфuron, йодсульфuron, мепенпир - дизтил; Топик – клодинафоп - пропаргил) не было обнаружено [5].

В конечном итоге можно заключить, что использование химических мер борьбы с сорными растениями благоприятно воздействовало на продуктивность возделываемых культур вследствие полного или частичного уничтожения сорняков, выносящих из почвы влагу и питательные вещества. Применяемые гербициды не оказывали негативного воздействия на здоровье человека, позволяя получать экологически безопасную сельскохозяйственную продукцию.

Выводы:
1. Фитоценозы сорно-полевой растительности в каждой из природных зон уникальны, что обусловлено своеобразным климатом, почвами и различиями культур, посевы которых засорены.
2. Превышение среднего значения засоренности посевов негативно сказывается на развитии культур, вследствие чего возникала необходимость обработки посевов гербицидами. Применение гербицидов избирательного действия сокращает засоренность в два и более раз.
3. Сорняки выносят из почвы огромное количество питательных веществ и влаги, создавая конкуренцию культурным растениям. Наши исследования установили, что на полях сорные растения выносят с 1 га в сумме 24 кг азота, 10 кг калия и 10 кг фосфора.
4. Посевы, свободные от сорняков, более продуктивны. В результате химической обработки урожайность кукурузы возросла на 50%, озимой пшеницы - на 33%, клевера - на 22% по отношению к сильно засоренному контролльному варианту.
5. Культуры, свободные от сорняков, выносят из почвы больше питательных элементов, так как не испытывают конкуренции. Максимальная прибавка к выносу азота и калия была на посевах озимой пшеницы (50 кг/га и 40 кг/га), фосфора – на посевах кукурузы (20 кг/га).

6. Химические меры борьбы необходимы на сильно засоренных полях. Они, снижая засоренность посевов, снижают выносы элементов питания сорняками, повышают вынос и урожайность культур, позволяя получать экологически безопасную продукцию.

Библиография:
1. Адиньяев Э. Д., Кожаев В. А., С учётом зональных особенностей // Защита и карантин растений. № 3. Москва, 2015. – С. 30-32
2. Адиньяев Э. Д., Кожаев В. А. Экологические аспекты борьбы с сорными растениями в различных агроландшафтах РСО-Алания / Адиньяев Э. Д, Кожаев В. А. // Известия Горского ГАУ. №51, ч.3. Владикавказ 2014. – С.17-23.
3. Кожаев В. А. Влияние гербицидов на засоренность посевов и потребление питательных элементов сорняками в различных агроландшафтах РСО-Алания. // Известия Горского ГАУ. № 51, ч.1. Владикавказ, 2014. – С. 26-32
4. Кожаев В. А. Влияние гербицидов на засоренность посевов и урожайность озимой ржи в горной зоне РСО-Алания / Елоева З. В., Кожаев В. А. // Научные труды студентов ГГАУ, выпуск 51, Владикавказ, 2014 – С. 30-31
5. Кожаев В. А. Особенности засоренности посевов и продуктивность пропашных, озимых зерновых культур и многолетних трав в различных природных зонах РСО-Алания / Адиньяев Э. Д., Кожаев В. А. // Известия Горского ГАУ. № 50, ч.4. Владикавказ, 2013. – С. 17-21
ДЕЙСТВИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И МИКОРИЗЫ НА ВИКУ ЯРОВУЮ НА СЕРОЙ ЛЕСНОЙ ЛЕГКОСУГЛИНИСТОЙ ПОЧВЕ
THE ACTION OF FERTILIZERS AND MYCORRHIZA ON VETCH SPRING ON GRAY FOREST LOAM SOIL

Сычева И.И.
ФГБНУ ВНИИФ, Московская область, Россия
gladskih.ira@yandex.ru

Зеленов А.А.
ВНИИЗБК, Орловская область, Россия
zelenov-a-a@ya.ru

Зоров А.А.
ФГБНУ Оренбургский научно-исследовательский институт сельского хозяйства, Оренбургская область, Россия

Ключевые слова: минеральные удобрения, вика яровая, накопление биомассы, урожайность.

Задачей сельскохозяйственного производства является повышение урожайности и улучшение качества бобовых культур, которые служат одним из основных источников растительного белка и имеют важное значение для создания полноценной кормовой базы и обогащения почвы биологическим азотом. Сокращение применения в земледелии минеральных удобрений привело к снижению урожайности сельскохозяйственных культур и содержания в них белка, ухудшению плодородия почвы. Что вызвало необходимость поиска новых источников минерального питания растений, среди которых особое место занимают микробные препараты обеспечивающие растения азотом в результате фиксации атмосферного азота и повышающие доступность почвенных запасов фосфора и калия. Среди них определенная роль принадлежит растительно-микробной ассоциации везикулярно-арбускулярных (AM) грибов.

Реакцию на инокуляцию AM грибами связывают с их влиянием на рост и минеральное питание растений, особенно поглощение труднодоступных форм фосфатов. Проблема этого элемента остается одной из самых острых в земледелии, что объясняется ограниченным геологическим запасом фосфора от продукта корневой поглотительной способностью корней и дефицитом анионов ортофосфорной кислоты в почвенном растворе, возникающих в силу химической природы фосфорных соединений. Именно поэтому усвоемость сельскохозяйственными культурами фосфора из удобрений не превышает 25%, а подавляющее его количество фиксируется почвой, превращается в труднодоступные для растений соединений. Улучшить минеральное питание можно путем применения двойной инокуляции растений фосфатдобывающими микроорганизмами, что позволит более эффективно
использовать почвенные элементы питания и сократить дозы внесения минеральных удобрений.

В настоящее время является возможным применение эндомикоризных AM грибов и азотфиксирующих бактерий в качестве регулирования продуктивности бобовых культур за счет улучшения фосфорного и азотного питания.

Целью исследований является оценка влияния гриба арбускулярной микоризы (AM) на показатели фотосинтетической активности и накопление биомассы вики яровой, использование ею элементов минерального питания для создания биопрепарата нового поколения. Для этого решали следующие вопросы: изучить действие AM на фотосинтетическую деятельность и биометрические показатели вики яровой; оценить влияние арбускулярной микоризы на накопление биомассы и показатели качества урожая при внесении минеральных удобрений на почвах, различающихся по степени окультуренности; выявить роль гриба арбускулярной микоризы в использовании викой яровой фосфора и калия из почвы и удобрений.

Изучено влияние эндомикоризного гриба Glomus intraradices на растения вики яровой. На слабоокультуренной почве он увеличивал площадь листьев как без внесения РК-удобрений, так и при их использовании. На среднеокультуренной почве эффективность гриба AM проявлялась только без внесения РК-удобрений. Это положительно отразилось на фотосинтетическом потенциале, который достоверно возрастал у растений, выращиваемых на слабоокультуренной почве во все фазы вегетации, а на среднеокультуренной почве эффект от AM наблюдался в бутонизации и плодообразование без внесения РК-удобрений.

Инокулянт AM и дозы РК-удобрений не изменяли содержание сырого белка в зеленой массе вики, выращиваемой на слабоокультуренной почве, поскольку в результате увеличения урожайности происходило ростовое разбавление азота.

Инокуляция семян вики яровой грибом AM обеспечила тенденцию повышения концентрации азота в растениях во время, вегетации равноценному внесению РК-удобрений, что свидетельствовало об улучшении условий для азотфиксации клубеньковыми бактериями;

Накопление в растениях элементов минерального питания на обеих почвах возрастало при внесении РК-удобрений; а также в результате использования гриба AM. Эффект от инокуляции соответствовал на среднеокультуренной почве внесению минеральных удобрений в обеих дозах, а на слабоокультуренной почве он превосходил их.

Применение гриба арбускулярной микоризы повышает коэффициенты использования растениями фосфора и калия из почвы и внесенных удобрений.

На основании экспериментальных данных установлено, что препарат эндомикоризного гриба арбускулярной микоризы положительно влияет на растения вики яровой. Он улучшает минеральное питание растений в основные фазы вегетации и увеличивает биомассу. Положительный эффект AM проявляется на среднеокультуренной почве без внесения РК-удобрений, а на почве с низким содержанием подвижного фосфора он положительно влияет на растения и при внесении под культуру РК-удобрений.
Библиография:
2. Ненайденко Ф.Н., Мазиров М.А. Плодородие и эффективность применение удобрений в агроценозах Верхневолжья / Владимир, 2002. 290c.
УРОЖАЙНОСТЬ ОСНОВНЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР В РАВНИННОЙ ЗОНЕ СЕВЕРНОЙ ОСЕТИИ В ЗАВИСИМОСТИ ОТ СТЕПЕНИ ЗАСОРЕННОСТИ ПОСЕВОВ

YIELDS OF MAJOR CROPS IN THE PLAINS AREA OF NORTH OSETIA DEPENDING ON DEGREE OF CONTAMINATION OF CROPS

Кожаев В.А., Адиньяев Э.Д.
ФГБОУ ВО Горский государственный аграрный университет, Владикавказ, Россия

Ключевые слова: равнинная зона, засоренность, виды сорняков, пропашные культуры, озимые зерновые культуры, многолетние травы, гербициды, урожайность.

Территория Северной Осетии имеет чёткое разграничение по вертикальной зональности. Различные почвенно-климатические условия оказывают существенное влияние на фитоценозы сорно-полевой растительности, обуславливая уникальный видовой состав сорняков, присущих каждой конкретной зоне. В трех природных зонах (равнинная, предгорная, горная) встречаются как узкоспециализированные сорняки, засоряющие посевы определенных культур, так и те, что вредят повсеместно. Их изучение в различных агроландшафтах, учёт, разработка мер борьбы являются актуальной задачей науки и производства.

Опыты в равнинной зоне закладывались в Моздокском районе, в КФХ «Колос» на каштановых почвах в зоне недостаточного увлажнения. Среднегодовая температура воздуха здесь 9,7 - 10,2°С, а сумма за год выше 10о - 3400оС. Относительная влажность воздуха - 77%. Годовая сумма осадков - от 360 до 460 мм с ГТК 0,8 - 0,9. Содержание гумуса в пахотном слое - 3,4%, рН = 7,3 (слабощелочная).

На территории равнинной зоны засоряют посевы в основном растения, относящиеся к группе яровых поздних. Многие из сорных растений этой зоны отличаются быстрым ростом, активным наращиванием зелёной массы, относительной засухоустойчивостью и теплолюбивостью.

Исследованиями установлено, что почвы и климат оказывают решающее влияние на формирование растительного покрова, следовательно – на видовой состав сорняков. Так как засоренность в данной зоне превышала средние значения, то возникла необходимость в ходе исследований применять гербициды. Численность сорных растений в результате химических методов борьбы сокращалась в два и более раз (на посевах озимой пшеницы и люцерны - 100% гибели сорных растений, на кукурузе - 95%).

Сорные растения негативно влияют на почвенное плодородие. В нашем случае они выносили с 1 га в среднем 95 кг азота, 31 кг калия и 17 кг фосфора.

Наиболее отзывчивы на борьбу с сорняками озимая пшеница и кукуруза (прибавка 43,9% и 51,2% соответственно), люцерна (19,3%).
Также установлено, что действующие вещества современных гербицидов не накапливаются в продукции в опасных количествах, следовательно, продукция, полученная с обработанных химическими средствами борьбы полей, является экологически безопасной.

Библиография:

1. Адиньяев Э. Д., Кожаев В. А., С учётом зональных особенностей // Защита и карантин растений. № 3. Москва, 2015. – С. 30-32
2. Адиньяев Э. Д., Кожаев В. А. Экологические аспекты борьбы с сорными растениями в различных агроландшафтах РСО-Алания / Адиньяев Э. Д, Кожаев В. А. // Известия Горского ГАУ. №51, ч.3. Владикавказ 2014. – С.17-23.
3. Кожаев В. А. Влияние гербицидов на засоренность посевов и потребление питательных элементов сорняками в различных агроландшафтах РСО-Алания. // Известия Горского ГАУ. № 51, ч.1. Владикавказ, 2014. – С. 26-32
4. Кожаев В. А. Влияние гербицидов на засоренность посевов и урожайность озимой ржи в горной зоне РСО-Алания / Елоева З. В., Кожаев В. А. // Научные труды студентов ГГАУ, выпуск 51, Владикавказ, 2014 – С. 30-31
5. Кожаев В. А. Особенности засоренности посевов и продуктивность пропашных, озимых зерновых культур и многолетних трав в различных природных зонах РСО-Алания / Адиньяев Э. Д., Кожаев В. А. // Известия Горского ГАУ. № 50, ч.4. Владикавказ, 2013. – С. 17-21
They didn’t have it in their time...

...imagine what you could achieve with it now

UK PubMed Central
A unique, free, information resource for biomedical and health researchers
ukpmc.ac.uk